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Functional dysconnectivity of visual and somatomotor
networks yields a simple and robust biomarker for psychosis
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People with psychosis exhibit thalamo-cortical hyperconnectivity and cortico-cortical hypoconnectivity with sensory networks,
however, it remains unclear if this applies to all sensory networks, whether it arises from other illness factors, or whether such
differences could form the basis of a viable biomarker. To address the foregoing, we harnessed data from the Human Connectome
Early Psychosis Project and computed resting-state functional connectivity (RSFC) matrices for 54 healthy controls and 105
psychosis patients. Primary visual, secondary visual (“visual2”), auditory, and somatomotor networks were defined via a recent brain
network partition. RSFC was determined for 718 regions via regularized partial correlation. Psychosis patients—both affective and
non-affective—exhibited cortico-cortical hypoconnectivity and thalamo-cortical hyperconnectivity in somatomotor and visual2
networks but not in auditory or primary visual networks. When we averaged and normalized the visual2 and somatomotor network
connections, and subtracted the thalamo-cortical and cortico-cortical connectivity values, a robust psychosis biomarker emerged
(p= 2e-10, Hedges’ g= 1.05). This “somato-visual” biomarker was present in antipsychotic-naive patients and did not depend on
confounds such as psychiatric comorbidities, substance/nicotine use, stress, anxiety, or demographics. It had moderate test-retest
reliability (ICC= 0.62) and could be recovered in five-minute scans. The marker could discriminate groups in leave-one-site-out
cross-validation (AUC= 0.79) and improve group classification upon being added to a well-known neurocognition task. Finally, it
could differentiate later-stage psychosis patients from healthy or ADHD controls in two independent data sets. These results
introduce a simple and robust RSFC biomarker that can distinguish psychosis patients from controls by the early illness stages.
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INTRODUCTION
Psychiatry needs robust, generalizable biomarkers of psychosis.
Such biomarkers could help clarify illness pathophysiology, predict
illness onset, or stratify patients into clinically meaningful
subgroups [1]. Here, we consider the possibility that functional
dysconnectivity of sensory networks might provide such a marker.
Past fMRI work has shown that–-in later-stage schizophrenia—
cortical sensory areas are more weakly connected to one another
(‘hypoconnectivity’) and more strongly connected to the thalamus
(‘hyperconnectivity’) [2]. The hyperconnectivity result has been
replicated [3–6] but the hypoconnectivity result has received
comparatively less attention. Moreover, these studies estimated
connectivity via Pearson correlation, which cannot distinguish
direct and indirect connections [7]. In many of these studies,
various confounds were not ruled out and the specificity of the
effect to psychosis remained an open question. Finally, no attempt
has been made to coalesce these findings into a single marker.
To be clinically useful, a neuroimaging biomarker should have a

number of features. It should: (1) be large in magnitude; (2) be
robust to potential confounds including motion, medication, and
comorbidities; (3) emerge with multiple preprocessing strategies

[8]; (4) generalize to unseen data [9]; (5) differentiate psychosis
patients from a clinical control group; (6) be recoverable from a
relatively brief scan session; (7) complement and improve upon
other more standard methods of discriminating groups (e.g.,
neurocognition); (8) have good retest reliability; and, ideally, (9) be
biologically plausible and easy to interpret [e.g., [10]]. We sought
to establish such a marker by leveraging data from the Human
Connectome Early Psychosis project. We focused on early
psychosis patients since this population lacks illness chronicity
confounds (e.g., poor health and diet, prolonged medication
exposure). We restricted the hypothesis space in a principled way
by conducting our analyses on four atlas-defined sensory
networks [11] (Fig. 1). Moreover, our results were computed at
the network level so as to yield potentially larger and more
generalizable group differences [11, 12]. Finally, we derived
resting-state functional connectivity (RSFC) matrices via regular-
ized partial correlation (graphical lasso), which may offer the best
strategy for removing spurious and indirect connections [13].
Below, we first generated RSFC matrices for each subject and

identified the sensory networks that most obviously exhibited
“dysconnectivity”, that is, abnormal cortico-cortical or thalamo-
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cortical connections [14]. Upon finding that the affective and non-
affective groups were nearly the same on every RSFC measure and
that they differed from controls on the somatomotor and
secondary visual network, we combined these two groups and
devised a novel “somato-visual” biomarker of psychosis. We go on
to show that this biomarker exemplifies most of the nine features
enumerated in the accompanying text.

MATERIALS AND METHODS
Participants
The HCP Early Psychosis Project (release 1.1) furnishes multimodal brain
imaging data from healthy controls (n= 54, 34 males, ageMEAN= 24.8),
patients with nonaffective psychosis (n= 81, 56 males, ageMEAN= 22.1),
and patients with affective psychosis (n= 24, 9 males, ageMEAN= 24.4; see
Table S1 for further clinical and demographic details). This sample does not
include 6 subjects (4 non-affective, 2 affective) who had a missing run,
6 subjects whose preprocessing failed or had otherwise low quality (1
control, 3 non-affective, 2 affective), and 3 non-affective patients with
excessive in-scanner motion.
All patients had an illness onset within five years of testing. Diagnoses

were based on the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition and were assessed via Structured Clinical Interview for DSM-5
(SCID) [15, 16]. Symptoms were assessed with the Positive and Negative
Syndrome Scale [PANSS; [17]] and a five-factor scoring system [18].
Medication dose on the day of the scan was recorded as chlorpromazine
equivalents [19]. There were 22 patients who were antipsychotic-naive at
the time of scanning.

fMRI acquisition
T1w (MPRAGE) and T2-weighted (SPACE) scans were used for image
preprocessing (slice thickness= 0.8 mm, 208 slices). Whole-brain multi-
band T2*-weighted echo-planar imaging (EPI) resting-state acquisitions
were collected at four sites with 32- or 64-channel head coils. Data were
not normalized according to testing site (or any other potential confound)
at any stage of the analysis. There were four resting-state scans per subject
(410 measurements; 5 min 28 s; TR= 0.8 s; voxel= 2mm3); these were
acquired with eyes open and in alternating phase encoding directions
(anterior-to-posterior, posterior-to-anterior; see Supplementary Methods).

fMRI preprocessing and accounting for in-scanner motion
Imaging data were minimally preprocessed using fMRIPrep (Supplementary
Methods). All subsequent preprocessing steps and analyses were conducted
on CIFTI 91k grayordinate standard space using a parcellated time series (i.e.,

one BOLD time series for each parcel, averaged over grayordinates; see
below for a description of the brain partition). We performed nuisance
regression on the minimally preprocessed functional data using 24 motion
parameters (6 motion parameter estimates, their derivatives, and the
squares of each) and the 4 ventricle and 4 white matter parameters
(parameter estimates, the derivatives, and the squares of each) [20]. Results
were initially run without whole-brain global signal regression (GSR). When
GSR was applied, we additionally included four more regressors (mean
signal, its derivative, and the quadratic of each) [21]. Each run was also
individually demeaned and detrended, adding 2 more regressors per run. To
show robustness, a third preprocessing strategy–aCompCor–was also used;
this incorporated the first five principal components of white matter and
ventricles for the physiological regressors [22].
Additionally, we removed the first five frames of each run and applied

motion scrubbing [23]. That is, whenever the framewise displacement for a
particular frame exceeded 0.20mm, we removed that frame, one prior
frame, and two subsequent frames (Supplementary Methods). To reduce
the effect of respiration on the framewise displacement measure, we
applied a first-order Butterworth low pass (0.3 Hz) filter to the framewise
displacement values of each run [24]. Unless otherwise noted, all subjects
were required to have at least four minutes of unscrubbed frames [25].
Groups differed on the mean framewise displacement across scans

before scrubbing and also on the number of unscrubbed frames (Table S1).
To match groups on these two variables in our post-hoc analyses, we
removed motion-prone patients (framewise displacement greater than
1.5 SD above the control mean; leaving 58 non-affective and 18 affective
psychosis patients). For certain analyses, as a more austere measure, we
also removed all subjects (patient or control) whose mean framewise
displacement exceeded .08 mm so that the groups were again matched on
this variable, similar to another prior study [26].

Brain network partition
We used the Cole-Anticevic Brain Network partition, which divides parcels
into 12 functional networks [11]. Functional networks were constructed
from the 360 surface-based cortical parcels from the Glasser et al. atlas [27]
plus an additional 358 volumetric subcortical parcels [11]. This partition
includes four sensory networks: primary visual, secondary visual, somato-
motor, and auditory (Fig. 1). There were 38 thalamic parcels, of which 22
were assigned to a sensory network (including 2 secondary visual,
2 somatomotor).

Resting-state functional connectivity (RSFC) derivation
For each subject, we derived RSFC matrices via regularized partial
correlation [28] and assessed each possible hyperparameter value via 10-
fold cross-validation (hyperparameter range= 0–0.5 with increments of

Fig. 1 The four sensory networks of the brain network partition. The partition comprises four sensory networks, with the somatomotor
network encompassing the somatosensory cortex. The thalamus contains parcels of each sensory network.
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0.001 from 0 to 0.01 and increments of 0.01 thereafter; see Supplementary
Methods for details). Specifically, on each fold, a 718 × 718 regularized
partial correlation matrix was formed from 90% of the time series. We then
predicted the held-out portion of a time series of each parcel using this
matrix along with the held-out time series of the remaining parcels
(see Supplementary Methods). A hyperparameter value was considered
optimal for a subject if it yielded a matrix that could most accurately
predict the held-out time series across parcels and folds, where accuracy
was assessed with the coefficient of determination (R2). An advantage to
this method is that it yields RSFC estimates that are more accurate and
more reliable than other multivariate approaches [13].

Comparing groups on functional connectivity
To determine each participant’s thalamo-cortical connectivity for a sensory
network, we averaged all Fisher-z transformed connection weights
between all 38 thalamic parcels and all cortical parcels of that network
(yielding one value per subject). To determine each participant’s cortico-
cortical connectivity value, we averaged Fisher-Z transformed connectivity
weights between all cortical parcels of a network (again, yielding one value
per subject). These averaged connectivity values were compared between
groups using one-way ANOVAs, once for cortico-cortical and once for
thalamo-cortical (Fig. 2). For pairwise comparisons of continuous quantities
(including the cortico-cortical values, the thalamo-cortical values, and the
proposed biomarker), we used Welch’s t-tests and Cohen’s d with Hedges’
correction (Hedges’ g) to account for sample size imbalances or potentially
smaller sample sizes [29]. Statistical correction, when applied, was
performed via Benjamini and Hochberg’s false discovery method
(q < 0.05) [30]. Corrected p values were denoted with an “FDR” subscript.

Comparing groups using other data sets
We considered whether our proposed biomarker could be found in two
independent data sets, each of which incorporated eyes-open resting-state
data. The first was collected at Rutgers University and comprised 19
healthy controls and 22 chronically ill psychosis patients (14 schizophrenia,
1 schizoaffective disorder, 7 bipolar disorder); these data were collected on
an older scanner (Tim Trio) with a different pulse sequence (e.g., MB 6,
iPAT= 2), a different scan duration (10min; 765 TRs), and a different
scrubbing threshold (0.3 mm) [31]. The preprocessing has been described
(ibid), with the only differences being that we also included subcortex (358
parcels), applied GSR, and derived the RSFC via graphical lasso, as above.
The second independent data set was from the UCLA Consortium for
Neuropsychiatric Phenomics; this data set allowed us to compare people
with ADHD (n= 35) or schizophrenia (n= 36), and healthy controls
(n= 93) [32]. The preprocessing steps for this single-band, legacy data
set (with no T2-weighted structural image) have been described, but
involved excluding GSR (using a variant of aCompCor instead), removing
high motion scans and subjects, analyzing the whole brain in grayordinate
space, using spike regression (rather than motion scrubbing), and deriving
the functional connectome via principal components multiple regression
[for details see [33]].

Establishing the somato-visual marker via cross-validation
and out-of-sample validation
To determine the predictive value of the somato-visual biomarker and to
assign risk scores for each subject, we employed binary logistic regression
and leave-one-site-out cross-validation (LOSOCV; four sites). Logistic
regression was chosen because it is parsimonious, robust, and yields
interpretable results [34, 35]. Sample size imbalances were minimized by
using weighted logistic regression (so that sensitivity and specificity were
given equal priority). LOSOCV was chosen because our goal was to
determine if results could generalize to different populations and scanners,
and since it has been used successfully in past studies [36, 37]. Note that,
to prevent data leakage, the normalization terms (mean/SD) for the RSFC
variable were derived from the training data only for each fold. We report
key classification statistics from the LOSOCV, namely, sensitivity, specificity,
positive predictive value, negative predictive value, balanced accuracy, and
area under the ROC curve (AUC) (Table S2). AUC confidence intervals were
provided via bootstrapping (1000 repetitions). Model performance was
evaluated using all data with a 1-df Likelihood Ratio Test (LRT).
We also determined if the model built from the HCP data could predict

the presence or absence of a psychotic disorder in the Rutgers and UCLA
data sets described above. As before, the normalization terms were based
on the training data only. We reported the same classification statistics as

before (Table S3), and compared patients and controls on the risk scores in
each held-out data set by using a one-sided Mann–Whitney U test.

Determining the predictive value of RSFC by comparing it
with neurocognition
We also examined whether the RSFC variable could improve upon
neurocognition for classifying patients and controls. We utilized the “Q3A
Memory” version of an auditory continuous performance task (ACPT) [38],
in which participants heard two blocks of 90 pre-recorded letter sequences
and were asked to indicate whenever they heard a “Q” followed by “A” four
letters later. In a longitudinal study of clinical high risk patients, the hit rate
from this task yielded one of the largest group differences (Cohen’s
d= 0.7) between healthy controls and patients who went on to develop a
psychotic disorder (n= 264, n= 89, respectively) [38]. Therefore, it was
expected to provide a valid benchmark comparison. To consider whether
the RSFC variable could improve upon this variable, we ran the weighted
binary logistic regression on all subjects–once with the neurocognition
variable by itself and once again with both variables included. We used a
1-df LRT to determine if the model improved by adding the RSFC variable.

Test-retest reliability
To assess test-retest reliability, we: (i) removed motion-prone patients as
above; (ii) computed the RSFC biomarker value separately for runs 1 and 2
(concatenated) and runs 3 and 4 (concatenated); and (iii) calculated risk
scores (across all subjects) at each time point by using weighted binary
logistic regression. Finally, we probed whether the risk scores were
correlated across the two time points and whether the RSFC biomarker
was consistent across time points by using intraclass correlation (ICC(2,1);
Supplementary Methods). Note that this ICC variant treats time point as a
random factor to better generalize to longer retest intervals.

RESULTS
Dysconnectivity of the somatomotor and secondary visual
networks
With respect to cortico-cortical connectivity, the groups differed
on the visual2 network (F(2,156)= 5.6, p= 0.004, η²= 0.07; Fig. 2).
Follow-up tests showed reduced connectivity in nonaffective
patients relative to controls (t(123.6)= 3.3, pFDR= 0.004, g= 0.54)
and in affective patients relative to controls (t(42.2)= 2.3, pFDR=
0.04, g= 0.57) but not between the two patient groups (p= 0.92,
g= 0.02). There was also a group difference on cortico-cortical
connectivity in the somatomotor network (F(2,156)= 10.2,
p= 0.0001, η²= 0.12). Follow-up tests showed reduced connec-
tivity in each patient group relative to controls (non-affective:
t(132.8)= 4.8, pFDR < 0.0001, g= 0.78; affective: t(37.7)= 2.4,
pFDR= 0.03, g= 0.63), but not between the two patient groups
(p= 0.27, g= 0.24). Groups did not differ on cortico-cortical
connectivity of the primary visual network (p= 0.43, η²= 0.01) or
auditory network (p= 0.52, η²= 0.01).
With respect to thalamo-cortical connectivity, the groups

differed on the visual2 network (F(2,156)= 6.2, p= 0.003,
η²= 0.07). Follow-up tests showed increased connectivity in
nonaffective patients relative to controls (t(120.7)= 3.4, pFDR=
0.0025, g= 0.58) and in affective patients relative to controls
(t(40.6)= 2.5, pFDR= 0.023, g= 0.64) but not between the two
patient groups (p= 0.85, g= 0.04). Groups also differed on
thalamo-cortical connectivity in the somatomotor network
(F(2,156)= 13.3, p= 5e-06, η²= 0.15), with thalamic hyperconnec-
tivity in nonaffective patients and affective patients compared to
controls (t(131.5)= 5.1, pFDR < 0.0001, g= 0.83; t(37.5)= 4.1,
pFDR= 0.0003, g= 1.07) but no patient group differences
(p= 0.66, g= 0.10). There was some suggestion of patient
thalamo-cortical hypoconnectivity in the primary visual network
(F(2,156)= 3.3, p= 0.04, η²= 0.04) and auditory network
(F(2,156)= 2.7, p= 0.07, η²= 0.03), however, follow-up t-tests
would not survive FDR correction. A split-half validation
approach–which involved running these analyses on two equally
split samples of controls and non-affective patients–yielded
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similar results (Supplementary Methods/Results), demonstrating
robustness. When patient groups were combined, the prominent
role of the somatomotor and visual2 networks in sensory
dysconnectivity became even clearer (Fig. 3).

In-scanner motion cannot explain sensory dysconnectivity
results
Patients in our sample exhibited more framewise displacement
and had fewer usable frames after scrubbing (Table S1). This is a
concern since increased motion can spuriously increase the
observed connectivity between nearby regions and decrease the
observed connectivity between distant regions; it can also
degrade the MRI image quality [23, 39–41]. To better consider

the effect of motion, we first examined whether motion correlated
with each of the two variables (cortico-cortical connectivity,
thalamo-cortical connectivity) for each of the two significant
networks for each of the three groups. Across these 12
correlations, there was no significant effects after FDR correction
(all |r | < 0.30), except for a negative correlation between frame-
wise displacement and cortico-cortical visual2 connectivity in non-
affective patients (r=−0.32, pFDR= 0.04). To further consider the
role of motion, we excluded all patients whose mean framewise
displacement value before scrubbing was greater than 1.5 SD
above the control mean (resulting in 58 non-affective, and 18
affective patients), so that groups were almost exactly matched on
this variable and also on the number of unscrubbed frames (mean

Fig. 3 Network-wise group differences in connectivity across the four sensory networks using the combined patient sample (threshold
FDR q < 0.05). Hedges’ g is shown in the legend. (Left) In patients, cortico-cortical hypoconnectivity (in blue) was found in the visual2 and
somatomotor networks but not in the other sensory networks. (Right) In patients, thalamo-cortical hyperconnectivity (in yellow/red) was
found with medium-large effect sizes in the visual2 and somatomotor network and hypoconnectivity was found with small effect sizes in the
auditory and primary visual networks. Note that the two patient groups were combined because they did not differ for any network before
correction for multiple comparisons.
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framewise displacement= 0.081–0.085mm in each group; mean
number of frames per group= 1522–1548; both p > 0.3, both
η² < 0.02). The four previously-significant one-way ANOVAs (two
for visual2 and two for somatomotor) continued being significant
(all η² > 0.05; all p < 0.03), with the control and nonaffective group
showing the same differences as before (all p < 0.02; all g > 0.47).

Medication cannot explain sensory dysconnectivity results
To consider the influence of medication, we first combined
affective and non-affective patients since they did not differ in any
of the connectivity measures described above. We then compared
controls to the 22 psychosis patients (12 non-affective) who were
naive to antipsychotics. The never-medicated patients had
increased thalamo-cortical connectivity with the somatomotor
and visual2 networks (t(32.6)= 2.8, p= 9e-03, g= 0.76;
t(51.0)= 3.5, p= 1e-03, g= 0.78) and decreased cortico-cortical
connectivity within the somatomotor and visual2 networks,
although the last effect was only marginally significant
(t(31.8)= 3.2, p= 0.003, g= 0.91; t(47.4)= 1.7, p < 0.10, g= 0.39).
We also directly compared patient groups with and without
medication on these same connectivity measures. No differences
emerged (all p > 0.17). Finally, to more fully consider antipsychotic
effects, we probed for correlations between medication dose and
connectivity values (cortico-cortical, thalamo-cortical) for these
two networks. None of the four correlations reached significance
(all |r | < 0.14, all p > 0.18, before correction). Thus, neuroleptics
cannot explain the results.

Combining across networks reveals larger group differences
and reveals a new somato-visual biomarker for psychosis
Given the similar results for the visual2 and somatomotor
networks, we averaged the two values together to reduce noise
and to potentially provide a stronger, overarching marker for
psychosis. We combined patient groups, as above, and found

larger effects than before (cortico-cortical: t(129.7)= 5.0, p= 1.3e-
06, g= 0.79; thalamo-cortical: t(141.3)= 6.0, p= 1.5e-08, g= 0.90).
Capitalizing on the fact that these two connectivity differences
were approximately equal and opposite, we strove to generate an
even stronger psychosis biomarker by normalizing these two
values across all subjects, and subtracting the second from the
first (thalamo-cortical - cortico-cortical). We found that the
resulting “somato-visual” marker was elevated in patients
compared to controls (t(136.2)= 6.9, p= 2e-10, g= 1.05). A similar
result would also arise if we were to use controls and only
medication-naive patients (Fig. 4B; t(33.7)= 4.1, p= 2e-04,
g= 1.11). If we were to exclude motion-prone patients (58 non-
affective and 18 affective in the combined sample), the effect
strengthened (t(120.7)= 7.1, p= 9e-11, g= 1.24). If we were to
use an even more stringent threshold for all subjects (all having a
mean framewise displacement <= 0.08 mm; 35 patients and 27
controls; similar to some prior studies [26]), the result was again
strong (t(59.9)= 4.2, p= 1e-05, g= 1.19).

The somato-visual biomarker is robust to preprocessing
strategy
To be credible, neuroimaging results should be robust to differences
in preprocessing strategy [8]. This is important because patient/
control RSFC differences have been shown to depend on preproces-
sing [25]. To this end, we re-ran the analyses with global signal
regression (GSR; see “Methods”). The central results were qualitatively
the same as before for the somato-visual biomarker (t(137.7)= 6.9,
p= 1e-10, g= 1.05; Supplementary Results; Fig. S2). Similar results
also arose for a third preprocessing strategy, aCompCor, which uses
the first five principal components from the white matter and
ventricles (t(135.4)= 6.8, p= 3e-10, g= 1.04) [20, 22]. Hereafter, we
apply GSR since it did not qualitatively alter our findings and since
others have argued that it offers the best strategy for denoising
[20, 25, 36] and for revealing brain-behavior relationships [42].

No Comorbidities/Concussion/
Substance Use/Nicotine

UCLA Data

Antipsychotic-NaiveLow-Motion Patients

Rutgers DataNo Anxious/Dep Symp.

Low Stress Patients

Somato-visual RSFC biomarker value 

P
at

ie
n

ts
C

o
n

tr
o

ls

P
at

ie
n

ts
C

o
n

tr
o

ls

g=.55, p=.006

g=.68, p=.005

SZ

Ctrl

ADHD

n=93

n=36

n=35

n=22
n=19

n=54
n=40

n=54
n=17n=22

n=54
n=76
n=54

n=54
n=35

F

DB CA

E G

g=1.24, p=7e-11 g=1.18, p=7e-05 g=1.05, p=5e-06 g=.99, p=.005

g=1.14, p=1e-05 g=1.11, p=7e-04

Fig. 4 Demonstrating robustness of the somato-visual RSFC biomarker. A–E The biomarker could emerge when patients were evenly
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“Methods”).
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The somato-visual biomarker can be found with short scan
durations
Although all subjects in our data sets were instructed to keep their
eyes open, patients may more easily become drowsy in the
scanner (e.g., due to sleep disturbances or medication), which can
lead to RSFC nonstationarity [43] and create possible confounds in
group comparisons, as noted by others [2]. Patients may also
become more anxious in the bore, leading to drop-out bias for
longer scan sessions. To consider whether the proposed
biomarker can be recovered in a shorter duration, we re-ran the
above analyses using only the first 5.5 min scan and easily
detected the biomarker (t(104.6)= 5.9, p= 5e-08, g= 1.04; see
Fig. S3). If we were to run only the very last run, the results would
be weaker but still highly significant (t(127.7)= 4.0, p= 1e-04,
g= 0.66). Note that initial scans may be more accurate since
sleepiness can worsen data quality and reliability [33]. In either
case, the data suggest that group differences can clearly emerge
with a single run but may be more variable across runs (see also
the test-retest reliability results below).

The somato-visual biomarker cannot be explained by
common confounds
Comorbidities and substance use pose a common confound in
psychosis studies. Restricting our sample to patients who did not
have a comorbid anxiety/mood/substance disorder, past mild
concussion, or current nicotine use (n= 40), we found that the
biomarker value was higher in patients (t(74.2)= 4.9, p= 5e-06,
g= 1.05; Fig. 4C). Higher stress levels among patients may also be
driving the results. However, if we include patients (n= 17) with a
stress level at or below the mean stress level of the controls using
the Perceived Stress Scale raw scores [44], the biomarker value
was again detectable (t(22.4)= 3.1, p= 5e-03, g= 0.99; Fig. 4D).
Heightened symptoms of depression/anxiety near the time of the
scan might also explain why psychosis patients differ from healthy
controls–a point made by others [45]. To rule out this possibility,
we considered only patients who scored at the lowest possible
level on all three items of this PANSS factor. The RSFC biomarker
was once again elevated (t(54.2)= 4.9, p= 1e-05, g= 1.14; Fig. 4E).
The somato-visual biomarker did not differ between males and
females in either patients or controls (both p > 0.20) and there was
no correlation with IQ or parental educational attainment in either
group (both p > 0.25, both |r | < 0.13). A patient’s race (black/white)
can occasionally impact neuroimaging models of psychopathol-
ogy [46] but we found no biomarker differences between
black/white patients (p= 0.58; see Table S1) (Note that there
were two few black controls (n= 4) to meaningfully test this

assertion in that group). Finally, the magnitude of the patient/
control differences did not depend on testing site, as determined
by a 2 (group) × 4 (site) ANOVA (interaction: F(3,151)= 1.2,
p= 0.33).

The somato-visual biomarker can be found in other data sets
and with a clinical control group
If the aforementioned RSFC biomarker is robust and specific to
psychosis, then it should be recoverable in different data sets and
relative to a clinical control group. Using GSR and normalizing
relative to that control sample, we found that patients in the
Rutgers sample (22 psychosis, 19 healthy controls) again could be
differentiated (t(39.0)= 3.7, p= 7e-04, g= 1.11; Fig. 4F). To
consider whether these results were a result of general
psychopathology, we analyzed a third data set–the UCLA data
set, which also contained ADHD participants (see “Methods”). The
RSFC biomarker once again generated effects in the expected
direction: Schizophrenia subjects (SZ) had higher values than
healthy controls and ADHD patients (SZ vs Ctrl: t(65.6)= 2.9,
p= 0.006, g= 0.55; SZ vs. ADHD: t(69.0)= 2.9, p= 0.005, g= 0.68;
Fig. 4G). ADHD patients did not differ from the healthy controls
(t(64.2)= 0.5, p= 0.59, g= 0.10).

Four thalamic parcels undergird somato-visual functional
dysconnectivity
If our results are specific to the somatomotor and visual2
networks, then we should be able to replicate the aforementioned
findings using the four thalamic parcels of just those networks. We
found such a result (t(122.8)= 5.7, p= 8e-08, g= 0.91). If we were
to require that patients exhibit less than 0.08 mm of average
framewise displacement (to better isolate the signal from these
four regions), the biomarker became even more apparent (four
parcels: t(56.1)= 4.7, p= 2e-05, g= 1.20). Thus even though we
excluded 34 of the 38 (89%) thalamic parcels, the biomarker could
still be identified, though longer resting-state sessions or more
reliable methods may be needed to establish the important role of
these four parcels more definitively [47].

The somato-visual biomarker can predict diagnostic status
across sites and studies
Does the somato-visual biomarker have predictive value? Upon
removing motion-prone patients (as above) and applying
weighted binary logistic regression and leave-one-site-out cross-
validation, we found that the RSFC biomarker could predict
diagnostic status (sensitivity= 0.74, specificity= 0.70, AUC= 0.79,
95% CI= 0.76–81; LRT= 43.2, df= 1, p= 5e-11; Fig. 5A; see
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Fig. 5 ROC curves. A The RSFC biomarker could distinguish 76 psychosis patients from 54 healthy controls using leave-one-site out cross-
validation (LOSOCV). B A model constructed from the somato-visual biomarker variable in the HCP data could predict whether a participant
had a psychotic disorder in two independent data sets (Rutgers: 19 controls, 22 psychosis patients; UCLA: 36 patients, 128 controls, including
ADHD patients). C Using LOSOCV on the HCP data, the RSFC biomarker could boost group discrimination when added to the ACPT task (51
controls, 71 patients).
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Table S2 for classification statistics). The results were nearly the
same when motion-prone patients were included (Table S2).
As an additional test, we considered whether a model

constructed from the HCP data could classify subjects in the
Rutgers and UCLA data sets (Fig. 5B; see Table S3 for classification
statistics). We found that the model could indeed predict
membership (psychosis or not) in each case (Rutgers: sensitivity=
0.68, specificity= 0.68, AUC= 0.80; Mann–Whitney test, U= 3.3,
p= 5e-04; UCLA: sensitivity= 0.72, specificity= 0.47, AUC= 0.65,
Mann–Whitney test, U= 2.8, p= 0.002). The latter results were
about the same if the ADHD controls were excluded (Table S3).

The somato-visual biomarker can improve upon a well-
established neurocognitive predictor
We next compared the predictive ability of the RSFC variable and
the auditory CPT variable (ACPT-Q3A hit rate; Table S1; Fig. 5C).
Using the same leave-one-site-out procedure as above (with
motion-prone patients excluded), the CPT task by itself could
discriminate the samples (sensitivity= 0.63, specificity= 0.80,
AUC= 0.73, 95% CI= 70–77). With the full sample (minus the
motion-prone patients), the results were significant when
compared against the intercept model (LRT= 44.8, df= 1,
p= 2e-11). Importantly, when the fMRI measure was added (three
regressors total, including intercept), the discrimination accuracy
numerically improved (sensitivity= 0.76, specificity= 0.76, AUC=
0.83, 95% CI= 77–86). Direct model comparison using the full
sample confirmed that the RSFC measure improved group
classification upon being added to the auditory CPT variable
(LRT= 25.5, df= 1, p= 4e-07).

Eleven minutes of resting-state can generate a moderately
reliable somato-visual biomarker
We next considered whether the first pair of resting-state scans
generated results resembling the second pair (test/retest inter-
val= 34.7 minutes). Incorporating only low-motion patients (using
the same threshold as above; 54 controls, 74 patients), logistic
regression risk scores were correlated across time points (r= 0.62,
p= 5e-14), and the biomarker had “moderate” intraclass correla-
tion (ICC= 0.62, 95% CI= 0.49–0.72, p= 3e-14) using published
benchmarks [48]. Supplementary results show that the ICC was
hampered by the less-reliable thalamo-cortical connectivity values,
especially at shorter scan durations.

DISCUSSION
We found that early psychosis patients exhibited thalamo-cortical
hyperconnectivity and cortico-cortical hypoconnectivity with the
visual2 and the somatomotor networks, but not with the auditory
or primary visual networks. These results arose to a similar degree
in affective and non-affective psychosis and did not depend on
antipsychotic medication or in-scanner motion. Moreover, patient
hypo- and hyperconnectivity patterns could be combined into a
single overarching “somato-visual” biomarker. The marker could
emerge within a single 5.5 min scan, could not be explained by
various common confounders, and could be revealed with two
other data sets, one of which involved an ADHD control group.
The marker could predict group membership across sites and
studies, and could improve upon an auditory CPT task.

Reassessing the granularity of “sensory dysconnectivity”
An implication is that it is painting with too broad a brush to say
that there is “sensory dysconnectivity” or “visual dysconnectivity”
in psychosis. The somatomotor and the visual2 networks were the
primary driving factors; the auditory and primary visual networks
issued forth much smaller group differences in cortico-cortical
connectivity and potentially opposite group differences in
thalamo-cortical connectivity (hypoconnectivity; see Fig. 3). Treat-
ing all visual regions or all sensory regions as the same will lead to

an underestimation of the role of vision and sensation,
respectively.
At the same time, our results suggest that sensory dysconnec-

tivity may be minimally apparent at any one connection but may
be clearly observed at the level of the network, when subtle local
differences can be averaged over larger swaths of cortex [12]. This
conclusion may explain why a recent machine-learning study of
over 800 psychosis patients had difficulty in reliably discriminating
psychosis patients and controls by using individual connection
weights [49].

What is the biological basis of a somato-visual biomarker?
Patients’ dysconnectivity patterns may be arising from NMDA
glutamate receptor hypofunctioning [50, 51]. For example, in a
double-blind, placebo controlled study, the healthy participants
who were administered ketamine—an NMDA receptor antagonist
—exhibited thalamo-cortical hyperconnectivity with sensorimotor
and higher-order visual cortex (e.g., postcentral gyrus, lingual
gyrus) and this activity pattern more resembled early-stage
psychosis patients than healthy controls [52]. The cortico-cortical
functional hypoconnectivity of somatomotor and visual cortical
regions has been observed in anti-NMDA receptor encephalitis, an
autoimmune condition that produces symptoms resembling
schizophrenia [53]. Structural connectivity differences may also
play a role. Thalamo-cortical white matter tracts are more
numerous for both somatosensory cortex (encompassed by the
somatomotor network) and occipital cortex [54], presumably
resulting from either novel white matter connections formed over
the course of development or inadequate pruning during
adolescence. Our results set the stage for more focused
pathophysiological, developmental, and pharmacological
investigations.

Somato-visual dysconnectivity as a biomarker for psychosis:
where do we go from here?
We already know how to diagnose psychosis, so why develop a
biomarker based on current diagnosis? One reason is that the
biomarker’s simplicity, coupled with its large effect size, robust-
ness, and generalizability, suggest that it may hold promise for
predicting a future onset of psychosis among individuals at clinical
high risk [55]. Adding neuroimaging to cognitive measures may
offer an especially promising combination, given how our
biomarker could improve upon the ACPT (AUC= 0.73→ 0.83).
Moreover, while it remains unclear whether our biomarker is a
cause or consequence of psychosis, it is at least conceivable that
reversing hypo- or hyperconnectivity–either through neurostimu-
lation, biofeedback, or pharmacological approaches–could reduce
the likelihood or severity of illness [for a related example, see [56]].
Finally, just as neuroimaging biomarkers of major depression have
stratified patients into subgroups that respond to specific
treatments [57], so too might the somato-visual biomarker in
psychosis, although this will need to be tested on larger samples.

Limitations and additional future directions
A limitation is that 11 min of resting-state yielded only a
moderately reliable biomarker (ICC= 0.62). While this result is
much better than what has been obtained with single edges from
RSFC matrices [mean ICC= 0.29, [58]], future studies might
consider using multi-echo fMRI or more advanced denoising
strategies for image reconstruction [47, 59, 60]. Although the
analyzed studies involved an eyes-open protocol, it is possible that
patients more often fell asleep, which could explain their weaker
cortico-cortical visual or somatomotor connectivity [61]. We
consider this scenario unlikely since the strongest group
differences occurred in the first resting-state scan, which began
within the first few minutes of scanning. Nevertheless, future
psychosis studies should more directly monitor wakefulness
through measures such as eye-tracking. Another limitation is that
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we do not yet know the clinical or behavioral correlates of somato-
visual dysconnectivity. We found no correlations with symptoms
or functioning but the sample overall was extremely asympto-
matic (see Table S1 and Supplementary Results), necessitating
future studies with more diverse patient types. In terms of
behavioral performance, numerous visual abilities are abnormal in
early-stage psychosis [62] including certain types of perceptual
organization, which depend on the secondary visual network
[63, 64]. Eye movements and visually guided reaching and
grasping are also severely altered, and these alterations cannot
easily be explained by antipsychotic medication [65–67]. A
promising line of research would be to relate these behavioral
impairments to connectivity patterns of the visual2 network [e.g.,
[64]] or somatomotor network [e.g., [68, 69]].

DATA AVAILABILITY
The HCP data are public (https://nda.nih.gov/edit_collection.html?id=2914). The
UCLA data are located on OpenNeuro.org (accession number: ds000030), and so too
are the Rutgers patient and control data (ds005073, ds003404, respectively).

CODE AVAILABILITY
Preprocessing was done with fmriprep v.21.0.1 (www.fmriprep.org). Code for
estimating RSFC and applying the Cole-Anticevic Brain Network Partition are on
GitHub (https://github.com/ColeLab/ActflowToolbox/; https://github.com/ColeLab/
ColeAnticevicNetPartition). Code for estimating intraclass correlation are on the
Matlab Central File Exchange: https://www.mathworks.com/matlabcentral/
fileexchange/26885-intraclass-correlation-coefficient-with-confidence-intervals.
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