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Cognitive flexibility as the shifting of brain network flows 
by flexible neural representations
Michael W Cole*

Our ability to overcome habitual responses in favor of goal- 
driven novel responses depends on frontoparietal cognitive 
control networks (CCNs). Recent and ongoing work is revealing 
the brain network and information processes that allow CCNs 
to generate cognitive flexibility. First, working memory 
processes necessary for flexible maintenance and manipulation 
of goal-relevant representations were recently found to depend 
on short-term network plasticity (in contrast to persistent 
activity) within CCN regions. Second, compositional (i.e. 
abstract and reusable) rule representations maintained within 
CCNs have been found to reroute network activity flows from 
stimulus to response, enabling flexible behavior. Together, 
these findings suggest cognitive flexibility is enhanced by CCN- 
coordinated network mechanisms, utilizing compositional reuse 
of neural representations and network flows to flexibly 
accomplish task goals.
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Introduction
Here, I define cognitive flexibility broadly, as the ability 
to effectively pursue a wide variety of possible task 
goals, especially when overcoming habitual/automatic 
responses to do so [1]. As an example of highly flexible 
cognition, I will frequently return to rapid instructed 
task learning (also termed zero-shot learning), which is 
the ability to learn and perform novel tasks immediately 
upon instruction [2,3]. This article will end with the 

conclusion that cognitive flexibility is likely generated 
by shifts in brain network activity flows, driven by 
flexible goal-relevant neurocognitive representations. 
How will I get us to this conclusion? The story begins 
with a recent shift in perspective toward a network view 
of cognitive control and the role of distributed networks 
in generating cognitive flexibility.

A brief history of cognitive control networks 
and their role in cognitive flexibility
Decades of research has established lateral prefrontal 
cortex as essential for cognitive control — the core set of 
abilities (e.g. working memory and inhibition [1]) un-
derlying cognitive flexibility. This evidence comes pri-
marily from human lesion studies [2] and non-human 
primate studies [3]. While there had been occasional 
reports of similar effects distal from lateral prefrontal 
cortex, two recent innovations increased acceptance in 
the field that networks are responsible for cognitive con-
trol abilities. These innovations were both methodolo-
gical and theoretical.

First, neuroimaging matured past its focus on single re-
gions, acknowledging distributed patterns of functional 
specialization throughout the brain. This broader focus 
resulted in evidence for a ‘multiple demand’ network — a 
set of regions involved in a wide variety of cognitive con-
trol-related functions — constituting the core of the cog-
nitive control networks (CCNs) [4,5]. Importantly, these 
networks’ involvement in a variety of functions has been 
thought to demonstrate their contribution to cognitive 
flexibility, especially the ability to flexibly perform a wide 
variety of possible tasks [6,7]. The assumption that these 
multiple- demand regions formed one or more network 
was subsequently corroborated by brain connectivity ap-
proaches, such as resting-state functional connectivity [5,8], 
ensuring these coactivation patterns were indeed brain 
networks. While the list of CCNs varies somewhat by atlas, 
most atlases include the frontoparietal network, the sal-
ience/cingulo-opercular network, and the dorsal attention 
network. Figure 1 shows a human brain atlas defined using 
resting-state functional connectivity [9].

A second innovation that supported a shift toward a 
network view of cognitive flexibility involved human 
lesion studies. These studies switched from single-pa-
tient reports to systematic multipatient mapping of le-
sion locations to cognitive abilities. This shift has 
revealed the causal contribution of distributed sets of 

]]]] 
]]]]]]

www.sciencedirect.com Current Opinion in Behavioral Sciences 2024, 57:101384

http://www.sciencedirect.com/science/journal/23521546
mailto:mwcole@gmail.com
https://twitter.com/@TheColeLab
https://doi.org/10.1016/j.cobeha.2024.101384
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2024.101384&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2024.101384&domain=pdf


brain regions (rather than single regions) to cognitive 
control abilities [6] (but see [12]). For example, a recent 
study by Jiang et al. [13] used a database of lesion lo-
cations and cognitive scores to map emotion regulation 
ability. Emotion regulation can be considered an ex-
pression of cognitive control in the domain of emotion, 
and can be thought of as a form of cognitive flexibility. 
Jiang et al. found that a CCN, including the ventrolateral 
prefrontal cortex, was causally responsible for emotion 

regulation abilities. This CCN contrasted with a CCN 
connected with dorsolateral prefrontal cortex, which 
showed no such relationship. Thus, while CCNs overlap 
with a ‘multiple demand’ network [14–16], there is still 
some specialization among CCNs. Together, these 
findings support the existence of multiple CCNs that 
jointly support the remarkable ability of humans (and 
some other species) to flexibly pursue a variety of pos-
sible task goals.

Figure 1  
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CCNs. (a) Anatomical location of CCNs in the human cortex, parcellated into regions based on [10]. Yellow regions are part of the frontoparietal control 
network, purple regions are part of the cingulo-opercular network, and green regions are part of the dorsal attention network. Defined using resting- 
state functional connectivity by [9]. (b) All functional networks as defined by [9]. (c) A resting-state functional connectivity matrix (region by region), 
based on multiple-regression functional connectivity, which reduces causal confounds in functional connectivity estimation relative to the standard 
pairwise Pearson correlation approach [11]. The regions were ordered based on network affiliation. The CCNs are highlighted with arrows.  
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Connectivity-based explanations for (activity- 
silent) working memory
The ability to maintain goals that differ from habitual/au-
tomatic behaviors is central to cognitive flexibility. Also 
important for flexibility is the ability to manipulate re-
presentations (e.g. perform mental arithmetic) in the ser-
vice of goals. These abilities are made possible by working 
memory — the active maintenance and/or manipulation of 
goal-relevant information. In some sense, all cognitive 
control processes (and therefore cognitive flexibility) 
follow from the human brain’s fundamental capacity for 
working memory [1]. Put simply, cognitive flexibility — 
the flexible pursuit of task goals — would not be possible 
without active maintenance of goal-relevant information 
(sometimes termed ‘context’) in working memory. With 
respect to this article’s central thesis — that cognitive 
flexibility is generated by activity flow shifts driven by 
flexible representations — working memory is required to 
maintain these flexible goal-relevant representations so 
they can eventually be implemented as activity flow shifts.

Classically, sustained activity in the lateral prefrontal cortex 
has been considered the primary neural mechanism un-
derlying working memory [17]. Yet, just like other cogni-
tive control abilities, this view is giving way to considering 
distributed CCNs as the basis for working memory [18]. As 
this shift was beginning, however, it was also revealed that 
working memory can be maintained in some situations 
without sustained activity, based on multiunit lateral pre-
frontal cortical activity in non-human primates [19] and 
whole-brain electroencephalography (EEG) activity in 
humans [20,21]. Specifically, engaging in a secondary task 
(i.e. experiencing robust distractors) during a working 
memory delay can make the activity coding for working 
memory content drop to baseline levels.

A recent theoretical account suggested that long-term 
memory encoding fills this gap [22], and therefore may 
be the true basis of cognitive flexibility rather than 
working memory. After all, the hippocampus is capable 
of rapidly encoding complex information in synaptic 
weights (i.e. long-term connectivity changes) that can 
easily span working memory delays in an activity-silent 
manner. This compelling theoretical account led to a 
clever behavioral study to test this hypothesis [23]
(Figure 2a). The core insight driving this study was that 
a key advantage of working memory is reduced proactive 
interference (PI) relative to long-term memory. This 
prediction was leveraged into a group manipulation, in 
which one group of participants had stimuli reused 
across trials (to cause PI), whereas the other group saw 
new stimuli on each trial.

Briefly, across four experiments, Oberauer and Awh [23]
found that PI had no effect on working memory per-
formance (Figure 2b). This was the case across multiple 
stimulus types and even with a secondary task 

manipulation known to induce activity-silent working 
memory. This suggested that long-term memory en-
coding, which is more prone to PI, is unlikely to explain 
activity-silent working memory. Importantly, however, 
when the working memory set size exceeded working 
memory capacity (four items), PI did have an effect. 
Thus, long-term memory plays a role in working 
memory, but only when working memory capacity has 
been exceeded. This suggests cognitive flexibility is 
likely enhanced by long-range network interactions with 
the hippocampus, utilizing long-term memory mechan-
isms when working memory capacity is exceeded.

If rapid connectivity changes in the hippocampus are 
unlikely to explain activity-silent working memory, what 
plausible mechanisms are left? Kozachkov et al. [24]
used computational modeling combined with empirical 
multiunit recording to test the hypothesis that short- 
term synaptic plasticity — brief connectivity changes 
within a CCN region (lateral prefrontal cortex) — could 
explain activity-silent working memory (Figure 2c). A 
series of computational models were tested, with direct 
comparison to non-human primate lateral prefrontal 
cortex multiunit activity during working memory task 
performance. They found that the models including a 
calcium-dependent short-term plasticity mechanism 
best matched the multiunit activity data. This contrasted 
with the more traditional working memory models that 
represented working memory content using persistent 
activity patterns within a recurrent neural network. 
Notably, both types of networks could perform working 
memory tasks in the presence of distractors, but only the 
short-term plasticity network did so with activity-silent 
delay periods. Further, they found that the short-term 
plasticity models were more robust to network de-
gradation, suggesting some advantages of short-term 
plasticity that were potentially selected for by evolution.

Adding additional nuance to the role of network pro-
cesses in working memory, two recent studies demon-
strate that the hippocampus supports working memory 
even at small memory loads [25,26]. The first study used 
lesions to find that dorsal hippocampus supports spatial 
working memory in rats [25]. The second study found 
that human hippocampal lesion patients had impaired 
working memory [26]. This study went further, however, 
using location–color pairings (similar to Figure 2a but 
using spatial locations rather than objects) to show that 
the working memory impairment was a deficit in the 
precision or fidelity of the working memory content (e.g. 
forgetting the exact color associated with a location). An 
additional functional magnetic resonance imaging 
(fMRI) experiment with healthy humans showed hip-
pocampal activity was associated with working memory 
precision. In combination with the Figure 2b results, 
these studies suggest that the hippocampus is able to 
somehow support working memory without increasing 
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PI, at least at low working memory loads. It will be 
important for future studies to investigate what this 
mechanism could be (e.g. short-term network plasticity 
within the hippocampus).

Together, these results suggest a nuanced account of the 
role of network processes in supporting cognitive flex-
ibility: short-term synaptic plasticity within CCNs typi-
cally maintains goal-relevant representations. However, 
this is supplemented by long-range network interactions 
with the hippocampus, enhancing working memory 
precision and capacity. Further, it appears that this 
strategy at high working memory loads has the side ef-
fect of increasing information interference/conflict, 
likely reducing cognitive flexibility at higher working 
memory loads (relative to lower working memory loads).

Flexible network activity flows as the basis for 
cognitive flexibility
Once a goal representation has been loaded into working 
memory, how does it get implemented as behavior? As a 

matter of logic, the information maintained within CCNs 
(e.g. lateral prefrontal cortex) must directly or indirectly 
influence neural activity in primary motor cortex, such 
that the goal can be achieved via action. For example, 
when someone driving a car (with the goal of getting 
safely to a destination) approaches an intersection, the 
color red should trigger one foot-related motor response, 
whereas a green light should trigger another. These 
neural episodes, as with many situations in everyday life, 
involve the flexible/context-dependent flow of activity 
from the sensory cortex to motor cortex. Thus, network 
activity flow shifts between brain regions are central to 
the story of cognitive control and cognitive flexibility.

What neural mechanisms might account for the network 
activity flow shifts necessary to flexibly implement goals 
maintained in working memory? It may appear that ra-
pidly flexible network changes are necessary for such 
context-dependent activity flow shifts. However, pre-
vious learning could have gradually set connectivity 
patterns such that distinct activity patterns from 

Figure 2  
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Evidence for short-term synaptic plasticity (a network mechanism within CCN regions) underlying activity-silent working memory. (a) The working 
memory paradigm used by [23], in which the color of the previously encoded item indicated on the last screen needed to be selected from a 
continuous color wheel. Set size varied from 1 to 8 across trials, with most prior evidence suggesting visual working memory capacity is approximately 
4 items. PI between trials was higher in one group (high PI) than the other group (low PI), since items were reused with distinct colors across trials in the 
high-PI group. Long-term memory was expected to involve more PI, given that long-term memory content is (by definition) maintained longer and 
therefore more likely to interfere with future trials. (b) Working memory performance errors increased with set size, but differentiated between high- 
and low- PI groups only at the higher set sizes. This is consistent with long-term memory only being used for set sizes beyond working memory 
capacity (4 items). This suggests standard working memory does not utilize long-term memory, as previously hypothesized by others [22]. (c) A recent 
computational modeling study that directly compared model mechanisms to non-human primate prefrontal cortex activity [24] found evidence that 
activity-silent working memory involves short-term synaptic plasticity (i.e. transient within-prefrontal cortex connectivity changes). The working 
memory encoding neural activity trajectory (black lines) does not contain information after encoding (the endpoints do not differ by condition), whereas 
the connectivity patterns (purple lines) do contain information (the endpoints differ by condition).  
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different stimulus inputs (e.g. a red vs. a green light) 
could lead to differential activity flows to distinct por-
tions of motor cortex. Thus, static connectivity pathways 
have the potential to support highly flexible ac-
tivity flows.

Consistent with this, a series of studies has shown that 
simulating the flow of activity using a static connectivity 
graph — structural connectivity or resting-state functional 
connectivity — is sufficient to predict task-condition-spe-
cific activations across a wide variety of brain regions 
[27–30]. Notably, these studies included multiple cognitive 
control tasks involving extensive cognitive flexibility. 
Further, a recent study using a single static network ar-
chitecture (estimated using resting-state functional con-
nectivity) showed that complex context-dependent 
behavior requiring extensive cognitive flexibility could be 
generated based on interactions between CCN activity 
flows and sensory input activity flows [31] (Figure 3).

Briefly, this fMRI study began by localizing brain regions 
representing all task-relevant information, including sen-
sory stimulus and flexible task rule representations, their 
interaction (conjunctions), and motor response re-
presentations (Figure 3a). Resting-state functional con-
nectivity was then fit (using multiple regression) between 
these brain regions (Figure 3b), estimating what can be 
thought of as the brain’s equivalent of artificial neural 
networks’ connectivity weights. Finally, these pieces 
were put together, with flexible task rule representations 
and sensory inputs flowing into conjunction regions, 
which in turn flowed into motor response regions. The 
motor response activity patterns were then decoded, de-
monstrating that the model performed a variety of com-
plex tasks above chance. Thus, the network flow 
dynamics generated by differential activity pattern inputs 
were sufficient to drive flexible cognitive behavior, with 
no need for flexible network changes. Notably, however, 
the model’s behavior was not perfect, suggesting addi-
tional mechanisms (such as flexible network changes) 
may be necessary to achieve full human-level cognitive 
flexibility.

Further evidence that only static connectivity is suffi-
cient to generate (at least basic) cognitive flexibility 
comes from a recent study suggesting each CCN re-
gion’s functionality is defined by its unique connectivity 
pattern [32]. This study specifically showed that each 
CCN region’s unique set of flexible task rule re-
presentations could be predicted based on that region’s 
unique brain-wide static connectivity pattern. Together 
with the study illustrated in Figure 3, this study supports 
the notion that most task-evoked neural dynamics — 
even those involved in cognitive flexibility — originate 
from activity flowing over static network connections.

Is static connectivity all there is? A long literature has 
established that — despite overall similarity across states 
— functional connectivity can change depending on the 
task state [33,34]. A recent study went further, showing 
that using task-state functional connectivity from a given 
task (rather than resting-state functional connectivity) 
significantly improved activity flow predictions of task- 
evoked activations throughout the brain [27]. Thus, ac-
tivity flows can shift either due to differential input ac-
tivity patterns (as in Figure 3) or due to task-state 
functional connectivity changes. With regard to cogni-
tive flexibility, it has been shown that these task-state 
functional connectivity changes likely play an important 
role during complex tasks requiring cognitive flexibility, 
with CCNs systematically shifting their global con-
nectivity patterns depending on which task set is cur-
rently being utilized [35,36]. These results suggest that, 
despite contributing the minority of connectivity var-
iance in most cases, task-state functional connectivity 
changes likely play an important role in the activity flow 
changes necessary for flexible cognition.

Despite their importance, the mechanisms underlying 
these task-state functional connectivities remain unclear. 
One possibility emphasized by Cole et al. [27] and Ito 
et al. [37] is that nonlinearities within each neural po-
pulation (e.g. a sigmoid transfer function, as used in 
many neural network simulations) can account for much 
of the state-dependent connectivity changes. These re-
sults were based on fMRI-based and multiunit spiking- 
based functional connectivity. Another form of task-state 
functional connectivity involves neural oscillations. 
These functional connections are calculated using high- 
temporal-resolution data (e.g. local field potential or 
EEG recordings), based on phase-dependent coupling. 
In a recent study involving non-human primates, 
Lundqvist and colleagues showed evidence that working 
memory content is controlled by a ‘push–pull’ relation-
ship between gamma- and beta-frequency coupling [38]. 
Briefly, it was observed that during working memory, 
encoding gamma and content-carrying spiking activity 
suppressed beta activity, whereas when working 
memory content was no longer needed, increased beta 
activity suppressed gamma activity and the corre-
sponding content-carrying spiking activity. Further, it 
was shown that this basic mechanism controlled the 
spatial flows of activity between portions of lateral pre-
frontal cortex. Thus, a given neural population could be 
controlled by task-state functional connectivity changes 
specific to each frequency, with any of a variety of pos-
sible working memory contents flexibly stored in that 
neural population. The authors suggested that this 
flexible neural mechanism could facilitate flexible cog-
nitive processes, such as generalization and rapid in-
structed task learning (also termed zero-shot learning). 
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Figure 3  
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Notably, a recent study used intracranial EEG in hu-
mans to find similar effects of low-frequency (theta) 
functional connectivity changes in the control of working 
memory content [39].

The importance of control representations 
(compositions and conjunctions) in the 
rerouting of network activity flows underlying 
flexible behavior
A series of recent studies have emphasized the im-
portance of control representations — localized activity 
patterns in the brain that represent cognitive control- 
relevant information — for cognitive flexibility [40–42]. 
These representations can be thought of as the working 
memory content described in previous sections, but with 
an emphasis on maintenance and implementation of the 
rules necessary for flexible task performance (rather than 
arbitrary stimuli). This could be something as simple as 
the rule ‘A→left’ (if you see the letter A, press the left 
button), or something as complex as one of the 64 tasks 
used in the study shown in Figure 3, such as “if both 
stimuli are vertical press your left index finger.” Re-
gardless of the complexity of the rule that the CCN 
activity pattern represents, that CCN activity pattern 
must somehow reroute network activity flows to flexibly 
implement task-appropriate actions [31].

One set of studies has emphasized the importance of 
conjunctive representations stored in CCNs for flexible 
cognition. For example, Kikumoto, Mayr, and Badre [42]
showed how the nonlinear interaction of task rules, sti-
muli, and responses was important for action selection 
during a context-dependent cognitive control task. Si-
milarly, Ito et al. [31] demonstrated that a nonlinear in-
teraction between task rule representations and multiple 
incoming stimuli was instrumental in selecting the cor-
rect motor responses during complex content-dependent 
tasks (Figure 3c). This study was unique, however, in 
demonstrating not just that such conjunctive re-
presentations were present but also 1) how they were 
generated and 2) how they shifted activity flows to im-
plement flexible task behavior. This involved simulating 
the flow of stimulus representations and task rule re-
presentations to what Ito et al. [31] termed ‘conjunction 
hubs’ — regions where stimulus and task rule 

representations interacted nonlinearly. These activity 
flows were simulated based on empirical task-evoked 
activations in the stimulus and task rule representing 
brain regions and their resting-state functional connec-
tions to conjunction hubs. Notably, simply adding the 
incoming stimulus and rule-related flows was not suffi-
cient for the generation of conjunctive representations. 
Instead, a nonlinearity (a rectified linearity, or threshold) 
needed to be applied. After these nonlinear interactions, 
the resulting activity patterns then flowed to primary 
motor cortex, where they generated motor responses 
consistent with accurate task performance. Thus, the 
model not only demonstrated how the conjunctive re-
presentations were generated, but also how they im-
plemented cognitive flexibility via cognitive interactions 
and eventual motor output (i.e. behavior).

Critically, Ito et al. [31] also demonstrated the importance 
of the opposite of conjunctive representations: composi-
tional representations (Figure 3). Specifically, the rule re-
presentations used in the model were compositional, in the 
sense that the rules were reused across many combinations, 
composing a wide variety of context-dependent tasks (64 
task sets). Notably, it was the nonlinear interaction of these 
compositional representations with stimulus representa-
tions that made them functional in the sense of generating 
task-implementing cognitive and motor representations. 
This demonstrates the potential for both compositional 
and conjunctive representations to increase cognitive 
flexibility. Indeed, it suggests that the network-based in-
teraction of compositional and conjunctive representations 
may be key to allowing the generalization of knowledge/ 
skill from previous experience (encoded in compositional 
representations) to be situated within a specific novel 
context via conjunctive representations.

The importance of compositional representations has 
been emphasized in the artificial intelligence and artifi-
cial neural network literatures as well. For example, 
Russin et al. [43] demonstrated the well-established 
‘catastrophic forgetting’ effect in artificial neural net-
works, wherein learning new tasks leads to forgetting of 
previously learned tasks. However, Russin et al. [43]
went on to show that adding a working memory layer to 
the artificial neural network, which maintained the 

Generating conjunctive control representations from compositional activity flows over static (resting-state) functional connections. (a) Flexible 
cognitive behavior requires the interaction (conjunction) between compositional rule and sensory representations. Ito et al. [31] constructed an 
empirical neural network (ENN) model to test whether resting-state functional connectivity patterns can account for how task-evoked activity patterns 
(neural representations) interact to produce conjunctive representations and subsequent behavior (motor representations). (b) Resting-state functional 
connectivity was computed using multiple regression on fMRI time series as subjects rested in the scanner. Fine-grained activity patterns between 
vertex patterns (fMRI voxels projected to the cortical surface) were estimated. Activity flow was then computed by multiplying the source activity 
patterns with the connectivity mappings to generate target activity in downstream brain regions. (c) The full ENN model, taking sensory and 
compositional rule representations as inputs (based on empirically observed task-evoked activations). Those inputs were then multiplied by the 
connectivity patterns to conjunction regions to generate conjunctive representations. A nonlinearity (rectified linear function) was necessary to 
produce the conjunctive representations. These generated activity patterns were then multiplied by connectivity with the primary motor cortex to 
generate motor activations. These motor activations were then decoded to determine what motor response was made, with high task performance 
accuracy (see far right of figure) resulting.
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current task context and modulated ‘hidden unit’ ac-
tivity within the network, substantially reduced cata-
strophic forgetting. This suggests that the CCN- 
implemented working memory mechanisms discussed 
earlier may be sufficient to avoid catastrophic forgetting, 
which is the first step toward the kind of compositional 
learning and transfer of compositional representations to 
novel task scenarios emphasized above.

A more recent study found that standard artificial neural 
networks, which have long been thought to be incapable 
of extreme cognitive flexibility (e.g. rapid instructed task 
learning), are able to learn and systematically implement 
compositional representations (enabling rapid instructed 
task learning) after all [44]. This was achieved through a 
form of curriculum learning, wherein a variety of simple 
tasks built out of components (e.g. ‘skip’ and ‘jump twice’ 
combined as ‘skip twice’) were learned and linked to ar-
bitrary instruction-like character strings. This was con-
ceptualized as meta-learning (‘learning to learn’), an 
approach to training networks via systematically exposing 
the network to multiple tasks to facilitate learning addi-
tional new tasks [45]. These results suggest that compo-
sitional representations — and supposedly the 
conjunctive representations needed to implement them 
— are learnable within artificial neural networks given an 
appropriately compositional set of training tasks. It will be 
important to determine whether human development 
provides such training, or if some other inductive biases 
within the human brain facilitate the generation of com-
positional representations beyond training/experience.

Conclusions
Cognitive control processes and the flexible thoughts 
and behaviors they enable are fundamentally brain 
network processes. This has been shown by the ex-
istence of highly distributed CCNs that increase their 
activity with cognitive control demands [7] and re-
present a wide variety of control-related information 
[32]. Additional evidence comes from models suggesting 
a central role for within-CCN short-term synaptic plas-
ticity in working memory maintenance [24], as well as 
data-driven models revealing a prominent role for net-
work activity flows in generating conjunctive re-
presentations that implement context-dependent 
behavior [31]. While these studies demonstrate how 
fundamental brain network processes are to cognitive 
control, they reveal a vast space of exciting future stu-
dies to answer the many questions left regarding the 
network basis of flexible cognition. For example, despite 
some evidence that nonlinear interactions play a role 
[31], it remains unclear exactly how activity flow routing 
(e.g. from stimulus to response) is flexibly and rapidly 
updated according to task demands. More generally, the 
fundamental nature of task-state functional connectivity 
remains to be discovered — are such connectivity 

changes due to nonlinearities, oscillations, or short-term 
synaptic plasticity? — with major implications for un-
derstanding the dynamic routing of activity flows un-
derlying flexible cognitive processes.
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