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Abstract

A central goal of neuroscience is to understand how function-relevant brain activations are

generated. Here we test the hypothesis that function-relevant brain activations are gener-

ated primarily by distributed network flows. We focused on visual processing in human cor-

tex, given the long-standing literature supporting the functional relevance of brain

activations in visual cortex regions exhibiting visual category selectivity. We began by using

fMRI data from N = 352 human participants to identify category-specific responses in visual

cortex for images of faces, places, body parts, and tools. We then systematically tested the

hypothesis that distributed network flows can generate these localized visual category

selective responses. This was accomplished using a recently developed approach for simu-

lating – in a highly empirically constrained manner – the generation of task-evoked brain

activations by modeling activity flowing over intrinsic brain connections. We next tested

refinements to our hypothesis, focusing on how stimulus-driven network interactions initial-

ized in V1 generate downstream visual category selectivity. We found evidence that network

flows directly from V1 were sufficient for generating visual category selectivity, but that addi-

tional, globally distributed (whole-cortex) network flows increased category selectivity fur-

ther. Using null network architectures we also found that each region’s unique intrinsic

“connectivity fingerprint” was key to the generation of category selectivity. These results

generalized across regions associated with all four visual categories tested (bodies, faces,

places, and tools), and provide evidence that the human brain’s intrinsic network organiza-

tion plays a prominent role in the generation of functionally relevant, localized responses.
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Author summary

A fundamental question in neuroscience has persisted for over a century: to what extent

do distributed processes drive brain function? The existence of category-selective regions

within visual cortex provides long-standing evidence supporting localized computations,

wherein specialized functions (e.g., selective responsiveness to face images) are thought to

be primarily generated by within-region processes. This account was recently updated to

include category selectivity dispersed across visual cortex, in the absence of category-selec-

tive regions. Here we provide groundwork evidence demonstrating that locally-exhibited

visual-category-selective responses can be accurately generated via distributed activity

flowing over globally connected systems. These processes were simulated via empirically-

based computational models initialized by stimulus-evoked activity patterns and empiri-

cal connectivity matching each category-selective region’s unique intrinsic functional con-

nectivity fingerprint. Results demonstrate that activity flowing over the human brain’s

distributed network architecture can account for the generation of category selectivity in

visual cortex regions.

Introduction

Fundamental progress in cognitive neuroscience will require understanding how functionally-

relevant, localized activations are established in the distributed and networked brain systems

within which they are embedded. Most modern neuroscience assumes that both local (i.e., spa-

tially restricted) and distributed (i.e., spatially dispersed across connected systems) processes

coexist in the brain [1], but the extent to which (distributed) brain connectivity patterns shape

localized activations remains unclear. There is extensive evidence for specific cortical regions

exhibiting highly selective responses for visual categories such as bodies [2,3], faces [4], places

[5], and tools [6]. For instance, selectivity for face images in the fusiform face area (FFA) has

been validated with human neuroimaging [7], neural recordings in non-human primates [8],

human lesion studies [9], and brain stimulation in humans [10]. In parallel, a landmark study

provided evidence that visual categories could be decoded from dispersed and overlapping

activity patterns in ventral temporal cortex [11]. Contemporaneous work proposed that a cor-

tical region’s functioning is largely determined by its connectivity fingerprint (not to be con-

fused with individual difference “connectome fingerprinting” [12]) – a region’s pattern of

connections that specify what information that region receives and conveys [13]. Additionally,

prior work has shown that a brain region’s response can be predicted by a model of its connec-

tive field, given by spatially-modeled (Gaussian) activity patterns in other parts of the brain

[14]. The key hypothesis that this collective history of research suggests is that connectivity fin-

gerprints are not just a byproduct of a region’s function, but a key determinant [15].

Over recent decades, the functional relevance of brain network interactions has been borne

out by a growing body of network neuroscience [16] studies assessing structural, functional,

and effective connections [17,18] during rest and task [19]. A core theoretical position across

network neuroscience is that neurocognitive information is propagated across structurally

and/or functionally organized brain systems. Building on this, we propose that whilst propa-

gating, information is transformed not only by local computations, but by features of connec-

tomic organization as well. In this framework, brain systems do not solely act as routes along

which locally-computed information can be conveyed, but as additional means of shaping

localized activations along the way [20]. Information processing is thus a complex operation

that is at least partially specified by brain network interaction patterns. The critical gap in the
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literature is systematically quantifying the extent that network interactions specify or account

for functionally-relevant processes during tasks. Supporting a crucial role for connectivity fin-

gerprints in visual processing, work by Osher et al. [21] found that structural connectivity fin-

gerprints can predict visual category responses in select ventral temporal cortex regions.

However, because statistical associations were used to make those predictions (rather than a

generative and/or mechanistic model), it remains unknown why connectivity is predictive of

visual category selectivity. Moreover, it is unclear whether the brain’s intrinsic (i.e., resting-

state [22–25]) functional network architecture specifies the interactions required to support

such a mechanism. Thus, building on work by Osher et al. [21] (as well as [26]), quantifying

the extent that intrinsic functional network interactions shape visual category selectivity is a

crucial next step in understanding how function-relevant, localized activations are generated

in the human brain.

Our recent work demonstrated the importance of activity flow processes – the movement

of activity between neural populations – in generating neurocognitive processes [27,28]. The

activity flow mapping approach can be conceptualized as generating computational models

from empirical connectivity data that are then tested empirically using task-evoked activations

[20]. This computational modeling approach is unique in its contact with empirical data,

allowing especially rigorous conclusions regarding the empirical validity of hypothesized

model features in generating cognitive processes (e.g., visual category selectivity). Specifically,

activity flow mapping makes contact with empirical data in three ways: (1) empirical brain

connectivity is used to build an activity flow model, (2) inputs to the model are empirical brain

activations in "source" (e.g., sensory input) regions, and (3) model-generated cognitive activa-

tions are tested as predicted mappings of "target" empirical brain activations. The first two

steps keep the proposed activity flow mechanisms close to empirical reality, while the last step

empirically tests the validity and causal sufficiency of the proposed activity flow mechanisms

for the generation of the cognitive processes of interest.

In the present study, we hypothesized that visual category selectivity exhibited by visual cor-

tex regions is generated by task-evoked activity flowing over each of these region’s unique con-

nectivity fingerprints. By systematically testing several models of such activity flow processes

(Fig 1), we establish the extent that activity flowing over the brain’s distributed resting-state

network architecture can account for localized visual category selectivity. Comparing process

models in this manner not only provides a quantitative estimate for how well distal activity

flowing over connectivity patterns account for task-evoked activations (Fig 1A), but also the

impact of known visual system features (Fig 1B-1D) amidst the overall process. Importantly,

this supports a framework for uncovering the functional importance of both localized and dis-

tributed processes, concurrently. We propose that distributed activity, selected by a given

region’s connectivity fingerprint, converges on that region, conferring it with locally special-

ized functioning (e.g., category selectivity).

One likely purpose of this localized convergence (e.g., in the FFA) of network interactions

is to represent related information (e.g., faces) distributed throughout the brain in a common

space for efficient competition between alternative activity patterns. In this account, FFA may

facilitate face recognition via implementing a winner-take-all computation (via lateral inhibi-

tion; [29]) between alternate faces represented in FFA, which is consistent with many compu-

tational models of local neural functions [30]. Importantly, we propose that the selective

activity observed in functionally specialized regions is generated primarily by distributed activ-

ity flowing over each region’s connectivity fingerprint. Our hypotheses suggest that connectiv-

ity patterns play an active, generative role in localized region-level activity, and predict that

estimating activity flow over a region’s unique connectivity fingerprint would account for the

majority of that region’s localized task-evoked selectivity. Importantly, evidence that
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distributed activity flow processes provide the dominant influence on visual-category-selective

responses does not discount the importance of local computations, but rather provides the

groundwork for understanding how network interactions can sufficiently generate localized

activations that may be mistaken for local computations.

Activity flow mapping [27,28] is well-suited to test these hypotheses (relative to other

approaches, such as standard encoding models and artificial neural networks) because all

parameters are explicitly based on empirical quantities, rather than abstractions [31,20]. Fur-

ther, activity flow mapping can be considered complementary to the implementation of con-

volutional neural networks (CNNs), which have successfully modeled a wide array of visual

processes [32]. Activity flow builds upon CNN insights (helping address known limitations,

see here: [33]) by empirically constraining possible network solutions (see Discussion for

extended considerations on this topic). The overall purpose of this study was to test our

hypothesis regarding an explanation of localized image-evoked responses in the human brain

(e.g., face selectivity). We modeled the generative process underlying these visual responses in

terms of distributed activity flow over empirical connectivity, much as one would model visual

responses during the testing phase of a CNN (i.e., after model weights have been fit). Instead

Fig 1. Network interaction models that could generate localized visual category selectivity. In all panels, a

simplified model schematic of face selectivity in the fusiform face area and posterior superior temporal sulcus (FFA/

pSTS, Methods) is depicted as a localized outcome of network interactions. We tested these models by applying activity

flow mapping from Cole et al. [27,28] to select held-out “target” regions (including FFA/pSTS). Circles: regions in a

network (color legend: bottom [25]). Gray arrows: activity flow processes (Methods), which are weighted (by each

region’s connectivity fingerprint) but shown as uniform for visualization purposes. (A) This model predicts that all

cortical network interactions (“fully distributed”) converge to generate localized face selectivity. (B) This model

predicts that only stimulus-driven interactions with V1 generate face selectivity. We tested this by restricting activity

flow mapping initialization to vertex-level data from V1. (C) Extending panel B: This model predicts that stimulus-

driven interactions are further shaped by activity flow processes in visual networks. We tested this by simulating the

flow of V1-initialized stimulus-evoked activity through the entire visual system. (D) This model predicts that fully

distributed interactions (i.e., beyond just the visual system in panel C) are important for generating localized visual

selectivity. We tested this by simulating the flow of V1-initialized stimulus-evoked activity through the entire set of

cortical brain regions, including recurrent/feedback activity flow. Using mappings initialized in V1 (as in B-C), we

assessed how well selectivity was generated when the fully distributed set of network interactions was initialized by

stimulus-driven activity flow processes.

https://doi.org/10.1371/journal.pcbi.1012507.g001
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of relying on optimization of CNN weights to vision tasks, we estimated the weights directly

from the human brain. The inferences are similar, with the approaches to deriving model

parameters for CNNs and for activity flow modeling being complementary and having the spe-

cific added benefit of empirically constraining possible network solutions. Empirical brain

connectivity parameters (i.e., a region’s unique connectivity fingerprint) are key to characteriz-

ing the network-based processes that converge to generate localized responses. Moreover, we

explicitly test whether activity flow mapping based on intrinsic connectivity fingerprints can

generate localized visual category selectivity, which provides novel evidence for the functional

relevance of the brain’s resting-state network architecture within the context of well-estab-

lished localized visual responses.

We used resting-state functional connections within our models based on extensive evi-

dence that they are highly similar to functional connections during a wide variety of task states

[34–36]. Estimating a single set of connection weights for our models, rather than a separate

set of connection weights for each task condition, allowed us to use a parsimonious set of gen-

eral (as opposed to stimulus-specific) visual processing models. The intrinsic (i.e., state-gen-

eral) nature of resting-state functional connectivity partially reflects constraints from

structural connectivity on resting-state functional connections [37]. Importantly, our use of

multiple regression (rather than the more standard Pearson correlation) to estimate functional

connectivity is known to make the relationship to underlying structural connectivity stronger

[38,39]. This is due to multiple regression fitting all time-series simultaneously, substantially

reducing confounded and indirect functional connections to reflect structural connections

more closely [27,40]. Together, these prior studies suggest our use of resting-state functional

connectivity estimated using multiple regression resulted in highly stable estimates of underly-

ing connectivity that generalize well to a variety of brain states (e.g., all visual processing condi-

tions included here).

We tested our hypotheses (Fig 1) — an initial step toward understanding how localized acti-

vations emerge from distributed network interactions in the scope of visual category selectivity

—utilizing human functional magnetic resonance imaging (fMRI) resting- and task-state data

from the Human Connectome Project (HCP) [41] young adult release. We focused on cate-

gory-specific representations of bodies, faces, places, and tools embedded in a working mem-

ory task. These visual categories correspond to functionally specialized visual cortex regions

that are highly replicated in the literature, such as the fusiform face area (FFA) and the para-

hippocampal place area (PPA). In sets (or complexes) of functional ROIs in the visual cortex,

we quantified actual and activity-flow-mapped visual category selectivity and estimated the

degree to which fully distributed (i.e., whole-cortex) network interactions (Fig 1A) contributed

to this selectivity. We probed the differential contributions of large-scale functional networks

to activity flow processes and used substitution null models to corroborate that a given ROI’s

connectivity fingerprint significantly shaped its visual category selectivity. Given that visual

input from the retina is known to initially arrive (via the lateral geniculate nucleus) in cortex

primarily via V1, along with evidence that fMRI activity in V1 represents a retinotopic map of

visual features [42,43], we also tested refined hypotheses (Fig 1B–1D) that specify stimulus-

driven activity flow processes as initialized in V1. In adapting the activity flow mapping proce-

dure to address stimulus-driven hypotheses, we were also able to reduce the potential impact

of causal circularity by constraining empirical parameters to network interactions originating

in V1 only. Systematically testing how well visual category selectivity can be generated

via empirically-constrained activity flow mapping constitutes an important first step in devel-

oping a network-interaction-based framework for how localized functionality emerges within

cortex.
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Materials and methods

Ethics statement

Data were provided by the Human Connectome Project [41], WU-Minn Consortium

(1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blue-

print for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at

Washington University. All participants provided written informed consent prior to data col-

lection and all data were de-identified.

Data acquisition and participants

Data used in the present study were collected by the Washington University-Minnesota Con-

sortium of the Human Connectome Project (HCP) [41] as part of the young adult (S1200)

release. Participants all provided written informed consent in accordance with protocols

approved by the ethics review board of Washington University. This dataset included resting-

and task-state functional neuroimaging data (see following Methods sections for more details

on each). We obtained the minimally preprocessed [44] neuroimaging data for N = 352

healthy young adults. Following the pipeline outlined Ito et al. [45], this N = 352 subset of the

HCP participants were selected to ensure high quality scan data and no familial relations. All

study procedures were approved by the Institutional Review Board of Rutgers University-

Newark. Further details on participant recruitment can be found in Van Essen et al. [41].

We used a split-sample validation approach to minimize false discovery rate [46]. The

cohort of HCP participants in the present study (N = 352) were quasi-randomly allocated to

either a discovery (n = 176) or replication (n = 176) dataset. Participants were chosen ran-

domly, but the sample size of both discovery and replication datasets were set at n = 176 to

ensure equal split-halves. Each dataset was analyzed identically but independently. Participants

in the discovery dataset (77 men, 99 women) had the following age ranges: 22–25 years

(26.14%), 26–30 years (41.48%), 31–35 years (30.68%), and 36+ years (1.7%). Participants in

the replication dataset (93 men, 83 women) had the following age ranges: 22–25 years

(22.16%), 26–30 years (43.18%), 31–35 years (34.09%), and 36+ years (0.57%). Results pre-

sented in figures refer to the discovery dataset, with replication dataset results reported in-text.

Task paradigm

In a subset of analyses (see “Network analyses: Response profile network contributions”), we

used data corresponding to seven HCP tasks and 24 task conditions that sampled diverse cog-

nitive domains: emotion, gambling reward, language, motor, relational reasoning, social cog-

nition, and working memory. In all other analyses we focused on the working memory/

category-specific representation n-back task (see [47] for more details on all tasks). Prior stud-

ies suggest that the n-back task can be used to test hypotheses regarding the function(s) of spe-

cific brain areas [48]. Further, manipulating how far back a participant must remember

(0-back versus 2-back) allows for the assessment of working memory maintenance (along with

other contrasts, such as stimulus type). While working memory is not the main interest of the

present study, specifically manipulating working memory has the added benefit of promoting

task engagement.

The cognitive domain of interest in the present study was the processing of semantic cate-

gories [11,49,50]. Category-specific representations were embedded in the n-back task via

blocks of trials that presented images of four reliably studied and distinct visual semantic cate-

gories [6,21]: (1) bodies [2,3]; (2) faces [4,51,52]; (3) places [5,53]; and (4) tools [49,54,55].
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The specifics of the n-back task are detailed in Barch et al. [47]. Briefly, the n-back task

included 2 runs with blocks of visual category trials (8 blocks, 10 trials each, 2.5 seconds each)

and fixation blocks (4 total, 15 seconds each). Half of the blocks were 0-back and half were

2-back. During 0-back working memory tasks, participants determined via button-press

whether presented stimuli (images of either bodies, faces, places, or tools) matched a constant

target shown in the initial cue screen. During 2-back working memory tasks, participants were

asked to indicate if the present stimulus matched a target from two screens back. Given that

working memory load was not the main interest of the present study, results presented here

reflect an average across 0-back and 2-back conditions (i.e., fMRI data was averaged after all

preprocessing steps), except for in analyses examining “response profiles” (i.e., responsiveness

of regions-of-interest to 24 HCP conditions, assessed independently). Additionally, prelimi-

nary analyses found no evidence that visual category selectivity was variable across the two

working memory load conditions.

MRI parameters

All MRI data were collected at Washington University in St. Louis, Missouri, USA in a custom-

ized Siemens 3T “Connectome Skyra” scanner. Whole-brain, multiband, and echo-planar

images (EPI) were acquired with a 32-channel head coil. The repetition time (TR) was 720 ms;

the echo time (TE) was 33.1 ms; the flip angle was 52 degrees; the bandwidth (BW) was 2290

Hz/Px; in-plane field-of-view (FoV) was 208 x 180 mm; 72 slices; 2.0 mm isotropic voxels; and

the multiband acceleration factor was 8. Whole-brain and high-resolution T1-weighted and

T2-weighted anatomical scans were also acquired, with an isotropic voxel resolution of 0.7

mm. All imaging data were collected over two days for each participant. Each day included

two resting-state fMRI scans, each lasting 14.4 minutes (for a total of approximately 29 min-

utes of rest data per day). During rest, participants were instructed to keep their eyes open and

fixated. Task fMRI (30 minutes of task data per day) followed resting-state fMRI scans on each

day. Each of the 7 tasks were performed over two consecutive runs. Further details on MRI

protocols and parameters can be found in Van Essen et al. [41].

fMRI preprocessing

We acquired minimally preprocessed data [44] from the HCP database (www.

humanconnectome.org). The minimal preprocessing pipeline is extensively detailed in Glasser

et al. [44] and is openly available (https://github.com/Washington-University/HCPpipelines).

In-brief, minimal preprocessing included: anatomic reconstruction and segmentation, motion

correction, intensity normalization, and EPI reconstruction to a standard (surface-based) tem-

plate. We also implemented HCP MSM-All registration (multimodal surface matching regis-

tration based on areal features from multiple sources, including: cortical folding/sulcal depth,

myelin maps, resting-state networks, and visuotopic maps; [56]). Preprocessing was performed

equivalently but independently on all functional runs, including resting-states and the 24 task-

state conditions. The resulting data were in CIFTI grayordinate (i.e., vertex) space. We per-

formed additional preprocessing steps on cortical vertices (59,412 vertices across the two

hemispheres). On both resting- and task-state data, we removed the first five frames of each

fMRI run, demeaned and detrended the timeseries, and performed nuisance regression. We

followed a variant [45] on methods suggested by Ciric et al. [57] to model and regress out nui-

sance parameters, including motion and physiological noise. We performed nuisance regres-

sion to remove six motion parameters, their derivatives, and quadratics (24 total). Anatomical

CompCor (aCompCor; [58]) was used on white matter and ventricle timeseries to model phys-

iological noise. The first five principal components from white matter and ventricles were
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independently extracted. These parameters, their derivatives, and the quadratics of all regres-

sors were removed (40 total). Altogether, 64 nuisance parameters were modeled, and associ-

ated variance removed from the data.

Global signal was not removed given evidence that it can artificially introduce negative rela-

tionships [59,60] and is non-standard for task activation analyses. However, the nuisance

parameters modeled and removed with aCompCor contain components similar to the pro-

posed global signal, with the added benefit of not removing gray matter signals [45,61].

Task-state activity estimation

Cortical activations related to task-state fMRI conditions (n-back visual semantic categories)

were estimated by a standard general linear model (GLM), which convolved task timing (per

block-design condition) with the SPM canonical hemodynamic response function [62]. This

was performed per cortical vertex, each belonging to a parcel (or region) of the Glasser et al.

[56] multimodal parcellation (MMP) atlas. Average coefficients of the GLMs were utilized for

each region or functional complex (described further below in “Identification of functional

complexes”) as estimates of visual category evoked brain activity. Note that the fully-distrib-

uted model (Fig 1A) was performed on the region-level data; the stimulus-driven (Fig 1B) and

stimulus-driven plus visual network interactions (Fig 1C) models were performed on vertex-

level data before averaging into functional complexes; and the stimulus-driven plus fully-dis-

tributed model (Fig 1D) was performed on vertex-initialized data in the first step and region-

level data in the second step. The steps and rationale of each of these models are extensively

detailed below.

Identification of functional complexes

To address the question of whether distributed network interactions can map [19,27,28] local-

ized, category-selective functional responses, we focused on the functional brain regions iden-

tified in Osher et al. [21] given the similarity of the four visual semantic categories in that

study to the HCP n-back task studied herein. Additionally, as suggested by Poldrack et al. [63],

variables that will be used in predictive analyses should not be chosen in an empirically-driven

manner (e.g., from post hoc cross validation and/or optimization procedures) because this has

the potential to artificially inflate accuracy due to circularity. Thus, selecting functional regions

of interest a priori has the benefit of controlling false positives in accuracy, particularly with

our focus on the well-established visual category literature. Upon further review of the litera-

ture (at the time of originally conducting this study and compiling this manuscript: 2021–

2022) as well as the regions belonging to the Glasser et al. [56] MMP atlas, we observed that

these functional regions: (1) contained multiple MMP regions (e.g., the parahippocampal

place area or PPA, which contained 6 MMP regions as in [53]); (2) did not have an exact ter-

minological match in the MMP atlas; and/or (3) included two discrete locations (e.g., the ret-

rosplenial complex, or RSC, often studied in conjunction with the PPA). To address this we

first performed a literature search of each of the Osher et al. [21] functional regions with Goo-

gle scholar (https://scholar.google.com/) and Neurosynth (https://neurosynth.org/), filtering

for relevance, year, and citation count (when possible) (see Table 1 references in right-most

column). We focused further on publications that had corresponding volumetric coordinates

(or MMP surface region labels when possible) and generated a list of Montreal Neurological

Institute (MNI) x/y/z volumetric coordinates for each functional region (with a minimum of

10 entries per region). We then used the average x/y/z coordinate set as a reference to identify

corresponding MMP regions (Table 2).
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To convert from volumetric space to region space, we employed the following steps (using

Connectome workbench, FreeSurfer, and AFNI/SUMA commands, per hemisphere): (1) con-

vert the MMP atlas to FreeSurfer’s fsaverage space; (2) convert fsaverage to the surface-mesh

MNI-152 template (which is also included in AFNI); (3) convert surface MNI-152 template to

volumetric MNI-template and obtain coordinates. Additional commands were used to ensure

that the templates aligned as best as possible, including zero-padding, thicker ribbons (that

were later filled), and adding MMP sphere labels. To obtain x/y/z coordinates, we divided the

template into equal portions perpendicular to the long axis of a given sphere label, identified

the middle division, then calculated the centroid. We then found the MMP regions that were

physically closest to the reference coordinate set for each functional region. We then referred

Table 1. Specifications of functional brain areas.

Visual

category

Region (acronym, L/R indices) Network Functional complex References

Bodies

MST, 2, 182 VIS2 EBA [2, 3, 47, 64–67*, 68–74]

PH, 138, 318 VIS2 EBA [2, 3, 47, 64–74, 75*, 76*]
V4t, 156, 336 VIS2 EBA [2, 3, 47, 64–65, 66*, 67*, 68–74, 77*]
FST, 157, 337 VIS2 EBA [2, 3, 47, 64–65, 66*, 67*, 68–74]

TE2p, 136, 316 DAN FBA [3, 69, 72–74, 75*, 76*, 78–83]

Faces

FFC, 18, 198 VIS2 FFA [4*, 47, 68, 69, 82, 84–86*, 87–94]

STSdp, 129, 309 LAN pSTS [71–73, 83, 89, 90, 92–98]

STSvp, 130, 310 DMN pSTS [71–73, 83, 89, 90, 92–98]

Places

PHA1, 126, 306 DMN PPA [5, 47, 68, 69, 99–106]

PHA2, 155, 335 DMN PPA [5, 47, 68, 69, 99–106]

PHA3, 127, 307 DAN PPA [5, 47, 68, 69, 99–106]

VMV1, 153, 333 VIS2 PPA [5, 47, 68, 69, 99–106, 107*, 108]

VMV2, 160, 340 VIS2 PPA [5, 47, 68, 69, 99–106, 107*, 108*]
VMV3, 154, 334 VIS2 PPA [5, 43*, 47, 68, 69, 99–106]

POS1, 31, 211 DMN RSC [5, 84*, 99, 100, 103, 104, 106, 109–111]

Tools

V4, 6, 186 VIS2 LOC [67*, 69, 74, 88, 101, 112, 113*, 114–124]

V8, 7, 187 VIS2 LOC [67*, 69, 74, 88, 101, 112–124, 125*]
LO1, 20, 200 VIS2 LOC [67*, 69, 74, 77*, 88, 101, 112, 113*, 114–124]

LO2, 21, 201 VIS2 LOC [67*, 69, 74, 77*, 88, 101, 112, 113*, 114–124]

PIT, 22, 202 VIS2 LOC [8*, 11*, 66*, 67*, 69, 74, 88, 101, 112–124]

V3CD, 158, 338 VIS2 LOC [67*, 69, 74, 88, 101, 112–124]

(Column 1) Visual categories to group remaining rows into four categories: bodies, faces, places, and tools. (Column 2) The MMP [56] brain region acronym and

corresponding indices (numbers in the MMP atlas) for the left and right (L/R) hemispheres. MST = medial superior temporal area; PH = basal parietal area (superior);

V4t = visual area V4t; FST = fundus of the superior temporal area; TE2p = temporal area 2 (posterior); FFC = fusiform face complex (MMP terminology for this region);

STSdp = posterior superior temporal sulcus (dorsal); STSvp = posterior superior temporal sulcus (ventral); PHA1-3 = parahippocampal areas 1–3; VMV1-

3 = ventromedial visual areas 1–3; POS1 = parieto-occipital sulcus area 1; V4 = fourth visual area; V8 = eighth visual area; LO1 = lateral occipital area 1; LO2 = lateral

occipital area 2; PIT = posterior inferotemporal; V3CD = area V3CD. (Column 3) CAB-NP [25] network each region belongs to (see Results) (Column 4) The functional

complex that each region belongs to, based upon prior literature. EBA = extrastriate body area; FBA = fusiform body area; FFA = fusiform face area (we used “FFA”

versus “FFC” for consistency with the broader literature); pSTS = posterior superior temporal sulcus; PPA = parahippocampal place area; RSC = retrosplenial complex;

LOC = lateral occipital complex. (Column 5) References used to identify volumetric coordinates (Table 2) corresponding to each functional complex and/or references

to corroborate MMP regions (identified with asterisks) given their reference in Glasser et al. [56]. See Reference list for corresponding manuscript.

https://doi.org/10.1371/journal.pcbi.1012507.t001
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to the Glasser et al. [56] supplemental results (as well as publications they based the MMP atlas

upon; see references with asterisks in Table 1) to exclude regions that were physically close but

functionally irrelevant (e.g., auditory regions near the pSTS, which was a potential ROI for

face processing).

The final set of regions, including their proposed category selectivity, network affiliations,

and references are listed in Table 1. The term “functional complex” indicates firstly that more

than one MMP region comprised each complex, and secondly serves to distinguish an MMP

atlas region from a category-selective (based on prior literature) complex in the present study.

Further, in some cases there were two functionally relevant complexes in the literature (e.g.,

PPA and RSC, both relevant to place processing, as in [21]), therefore both were included.

When appropriate, we applied the Cole-Anticevic brain-wide network partition (CAB-NP,

[25]), which was based on HCP resting-state fMRI data and was generated from a Louvain

community detection algorithm that assigned MMP regions to 12 functional networks.

Table 1 lists the network assignments of each region, which is further reflected in Results fig-

ures by color labeling matching throughout all relevant figures. The reference sets of volumet-

ric coordinates (x/y/z) are listed in Table 2.

Resting-state functional connectivity estimation

Functional connectivity (FC) was modeled as a series of target dependent variables (i.e., each

brain region), each with multiple source independent variables (i.e., other brain regions) (see

following section “Activity flow mapping: a generative model”). As in Cole et al. [27], source

vertices excluded all vertices within a 10 mm dilated mask of the target region (as well as

excluding vertices of the target region itself). This reduced potential circularity related to spa-

tial autocorrelation by avoiding nearby vertices in predicting the activity of the target. Modi-

fied source sets of vertex-level timeseries were then averaged together based on their Glasser

et al. [56] MMP region assignment. FC was then estimated with a method proposed by San-

chez-Romero and Cole [125] termed combinedFC. CombinedFC integrates the standard

methods of bivariate correlation, partial correlation, and multiple regression together to

account for causal confounds better than each method alone. In Sanchez-Romero and Cole

[127], combinedFC improved precision in a series of simulated networks, and retained robust

Table 2. Average MNI coordinates for each functional complex from the literature.

Left hemisphere Right hemisphere

Functional Complex x

mean (SD)

y

mean (SD)

z

mean (SD)

x

mean (SD)

y

mean (SD)

z

mean (SD)

EBA -48.9 (6.6) -73 (4.6) 2.7 (8.3) 45.7 (6.5) -69.5 (3.5) -0.7 (3.9)

FBA -39.7 (4) -44.2 (8.2) -20.2 (1.6) 41.9 (3.5) -47 (6.2) -21.5 (3.7)

FFA -41.2 (3.6) -53.6 (7.2) -18.6 (3.9) 40.6 (3.5) -51.7 (3.6) -18.6 (5.2)

pSTS -51.8 (6.5) -49.9 (9.9) 8 (6) 51.3 (4.1) -49 (8.1) 8.6 (4.4)

PPA -27.2 (4.9) -44.6 (6.2) -9 (4.7) 25.6 (4.4) -42.4 (5.5) -10.3 (5.1)

RSC -13.3 (4.2) -56.5 (6) 10 (6.2) 14.3 (5) -54 (5.6) 9.3 (7.8)

LOC -45.7 (7.1) -70.4 (8.5) -8.5 (6.3) 42.5 (6.4) -69.4 (11.1) -9 (7.2)

(Column 1) The functional complexes assessed in the present study. Naming conventions are the same as in Table 1. (Columns 2–4) Stereotactic (x/y/z) MNI

coordinates for the left hemisphere; mean and standard deviation (SD) of at least 10 publications per complex (see Table 1 for full list of references). Publications that

listed coordinates in Talairach space were converted to MNI space following Lacadie et al. [126]. Note that some publications reported multiple functional localizer

experiments, which were treated as separate entries in obtaining average coordinates. (Columns 5–7) The same as in columns 2–4, but for the right hemisphere. These

coordinate sets were used as references to locate corresponding MMP [56] regions, yielding surface based functional complexes.

https://doi.org/10.1371/journal.pcbi.1012507.t002
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network structure with empirical fMRI data (see [127] for a detailed report of this method).

Briefly, each participant’s resting-state data (pre-processed) was firstly assessed with partial

correlation (amongst each pair of regions, conditioning on all other regions) to find condi-

tional associations, which were examined for statistical significance. This step addressed

potential confounders and causal chains [128] and built an initial connectivity architecture by

adding in significantly correlated edges only. Then, bivariate correlation estimates (i.e., Pear-

son correlation) for each pair of connected regions (from the initial partial correlation step)

were used to remove spurious edges resulting from conditioning on colliders (specifically,

edges where r was statistically equal to zero). Lastly, a multiple regression procedure was per-

formed to scale the estimated edge weights. For each target region functioning as a response

variable, all other connected source regions functioned as regressors to estimate the final com-

binedFC weight.

Activity flow mapping: a generative model

Activity flow mapping is a generative modeling approach that maps held-out brain activity

based upon the inherent link between activation patterns and functional connectivity

[20,34,129,130]] (i.e., an empirically-parameterized extension of generative network models

outlined in Betzel and Bassett [131]). Activity flow was developed by Cole et al. [27] (see

Cocuzza et al. [28] for further details), and is described by Formula 1 (Fig 2):

Mapped activityj ¼
X

i6¼j
ðactual activityi∗connectivityi$jÞ ð1Þ

Where j is a held-out brain region, and i indexes all other regions in a given parcellation.

Note that the standard application of activity flow mapping given by Formula 1 is consistent

with the “fully distributed” mapping of Fig 1A (i.e., mapping that is used to generate visual cat-

egory selectivity, see “Category selectivity” below) because source regions (i) refer to all other

cortical regions. Variations on this are outlined in later Methods sections (see the following

sections below titled “Stimulus-driven visual category selectivity” and “Category selectivity

from stimulus-driven network interactions further shaped by fully distributed network inter-

actions”). This method induces the bias that brain activations are propagated and shaped via

distributed network interactions. Throughout the present study, the term “distributed” means

globally connected brain systems that are specified by functional brain network organization

(i.e., functional connectomes). Applied to research questions on functional processing, activity

flow maps task-evoked (functionally relevant) activity in held-out target regions as the sum of

the task-evoked activity in all other source regions scaled by FC estimates between the target

region and corresponding source regions (Formula 1). The activity flow mapping procedure

explicitly tests the hypothesis that the sum of empirically-based source region activity, parame-

terized by empirical patterns of brain connectivity, is equal to target region activity. Using a

simulated model of neural processing, Cole et al. [27] found that activity flow mapping was

most accurate when a global coupling parameter was high and the strength of self-coupling

(local) connections was low (Fig 2B). Critically, this suggests that the successful application of

fully distributed activity flow mapping (Fig 1A) to empirical brain data reflects similar high

global coupling properties being preserved in real (rather than simulated) data. Thus, the suc-

cess of activity flow mapping can be taken as a proxy for how much signals over distributed

network interactions contribute to a given activation (see “Category selectivity” below for

more details).

To map category-selective responses to bodies, faces, places, and tools we applied the activ-

ity flow approach to each of these categories independently. Actual task activations used were

beta estimates generated by task GLMs (described above in “Task-state activity estimation”),
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Fig 2. Activity flow procedure to map task activity in held out brain regions. (A) Activity flow mapping toy diagram

and formula. Task activity for held-out region j (purple) is mapped as the sum of task activity of all other cortical

regions, i (coral) (n = total number of regions), weighted by their connectivity estimates with j (gray). (B) Activity flow

simulation results (reproduced with permission from [27]) demonstrating that activity flow mapping is most successful

when distributed processing mechanisms are high and localized processing mechanisms are low. (C) Example of

activity flow mapping with empirical data (steps 1–6) (reproduced with permission from [28]). For a given target

region j, estimates of intrinsic (e.g., resting-state) connectivity between j and all other source regions (step 1) are

multiplied by all other regions’ actual task activations (step 2). This yields an activity flows map quantifying the

contribution of all other regions’ activity flow upon the held-out region, j, for the task of interest (step 3). These are

summed to equal the mapped task activity of j (step 4). This procedure is iterated over all regions to generate activity-

flow-mapped task activations across the whole cortex (step 5). This is compared with the actual whole-cortex map of

task activations via Pearson’s r, MAE, and R2 to estimate accuracy (step 6). Importantly, this approach is flexible to

different estimates of connectivity. Source vertices not included in the analyses (10 mm from the target region j; see

Methods) are depicted in green.

https://doi.org/10.1371/journal.pcbi.1012507.g002
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with a focus on the regions comprising functional complexes as the held-out target regions

(described above in “Identification of functional complexes”). Functional connectivity esti-

mates between targets (functional complex regions) and sources (all other connected regions)

were based upon resting-state timeseries and estimated via combinedFC (described above in

“Resting-state functional connectivity”). To assess accuracy, activity-flow-mapped category

responses were compared to actual (i.e., empirical) category responses via Pearson r correla-

tion coefficient (NumPy corrcoef function in Python), mean absolute error (MAE), and the

coefficient of determination (R2) (sklearn r2_score function in Python).

Each of these indices quantified a different aspect of accuracy, altogether providing a thor-

ough evaluation of activity flow mapping. In brief, Pearson’s r estimated the linear correlation

between actual and mapped brain activations, with a potential range from -1 to 1 and the prop-

erty of scale invariance. MAE measured the arithmetic mean of absolute errors between actual

and mapped brain activations, with a sensitivity to scale. The coefficient of determination (R2)

estimated the percent of unscaled variance in the actual brain activations that was accounted

for in the mapped activations. Note that R2 maintains a range of negative infinity to 1; from 0

to 1 R2 can be interpreted as 0 to 100% variance, but negative values indicate incorrectly scaled

predictions. Thus, each index had clear advantages and disadvantages, but altogether provided

a complementary, full characterization of mapping accuracy. In all cases, these comparison sta-

tistics were taken per participant, then averaged across participants to provide a random effects

estimate.

Category selectivity

To assess how selective each functional complex of interest was for a given visual category, we

measured the ratio of category activation amplitude divided by non-category activation ampli-

tude, for both activity-flow-mapped data and actual data, per participant. For example, for the

functional complex of the extrastriate body area (EBA) and fusiform body area (FBA) (see

above: “Identification of functional complexes”), we quantified body responses divided by

non-body responses. Importantly, non-category responses included only other n-back condi-

tions, and not any other HCP task condition, such that the estimation of visual category selec-

tivity only considers comparable task manipulations. Per participant and functional complex,

we used Formula 2:

category selectivitycomplex ¼
meanðcategory responsesÞ

meanðnon � category responsesÞ
ð2Þ

We will henceforth refer to the ratio in Formula 2 as “category selectivity”, which can be

interpreted as how many times larger category responses were than non-category responses.

For example, if a given participant’s body-category selectivity score (for the EBA and FBA

complex) was 1.5, then their activations to body images were 1.5 times larger than their activa-

tions to non-body images (i.e., face, place, and tool images in the n-back task). A category

selectivity score of 1.0 reflected the hypothesized null mean given that it quantifies category

activations as equal to non-category activations. The main advantage of utilizing a ratio

versus a difference score is that it is less sensitive to beta value scale differences across brain

regions.

Prior to calculating the category selectivity score (Formula 2) it was necessary to normalize

the range of activation values. This was necessary for two reasons: (1) avoiding negative num-

bers (which would limit interpretability of the selectivity values) and (2) rescaling activation

values such that every participant’s data was in the same range (which allows for group level

comparisons). We used a standard normalization procedure termed min-max normalization
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(also termed feature scaling). We used Formula 3:

xnormalized ¼ aþ
ðx � minðxÞÞðb � aÞ
ðmaxðxÞ � minðxÞÞ

ð3Þ

Where a and b are the lower and upper bounds of the rescaled data, respectively. We used

a = 0 and b = 1.0, which were selected to increase interpretability of the category selectivity

ratio since all ratios were positive and included a possible minimum of 0. The minimum and

maximum values in Formula 3 were calculated based on the actual activations of a given region

set (e.g., EBA and FBA across-complex average for body selectivity) across all 24 task condi-

tions (x) for each participant separately. Note that results were highly similar if minimum and

maximum values were calculated separately for mapped and actual activations. Additionally,

we report the cross-complex average results herein given that no functional complex was sub-

stantially driven by a particular region (i.e., regions in a given functional complex had similar

category selectivity scores). We additionally identified and removed outlier participants (in

category selectivity) following the methods described by Leys et al. [132] (median absolute

deviation), using a highly conservative threshold of -/+ 5 deviations relative to the median.

Given this high threshold, outlier removal excluded a small number of participants (an average

of n=5 of 176 were removed across analyses, or approximately 2.8% of participants) with cate-

gory selectivity scores that were not representative of the group average, which is how category

selectivity was reported (which had a large sample size of n = 176 per discovery and replication

datasets). Note that statistical significance (see “Experimental design and statistical analysis”)

was not impacted by removal of outlier participants.

In assessments of the fully distributed network interaction scheme (Fig 1A), we estimated

the contribution of distributed network interactions to a given category-selective response by

computing the percent of actual category selectivity (distributed plus localized processes) cap-

tured by activity-flow-mapped category selectivity (i.e., a model based upon distributed pro-

cesses only, Fig 2B). We propose that the percent leftover (i.e., not captured via activity flow

mapping) is due to either local processes (not isolated in the model) or other sources of model

error (e.g., noise in the data). We used Formula 4:

% contribution of distributed processes ¼
mapped category selectivity
actual category selectivity

� �

∗100 ð4Þ

If the percentage given by Formula 4 was statistically greater than 50%, we inferred that cat-

egory selectivity in that functional complex was generated primarily via distributed activity

flow processes. Note that these estimates reflect a lower bound on the contribution of distrib-

uted processes, since they can be driven lower not only by local processes but by other sources

of model error.

Network analyses

In assessments of the fully distributed network interaction scheme of Fig 1A, we tested the

contributions of each large-scale CAB-NP functional network ([25] Fig 3B) to activity-flow-

mapped responses. We did this at both the levels of: (1) mapped category-specific responses,

and (2) mapped response profile.

Category-specific network contributions. The activity flow map (Fig 2C, step 3: “activity

flow products”, or just “flows”) quantified how much activity of a given source region was

weighted by functional connectivity with the held-out target region (i.e., before summing in

Formula 1). We used the network-based averages of these flow values for each functional com-

plex and its respective visual processing category to probe category-specific network
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contributions to the activity flow map. Source regions were averaged together based upon

their CAB-NP assignments. These contributions were each statistically compared to one

another (see “Experimental design and statistical analysis”) to discover the networks that con-

tributed the most to a given activity flow map.

Response profile network contributions. To measure network contributions to activity

flow mapping at the response profile level (i.e., across all 24 HCP conditions), we conducted a

dominance analysis [133]. We first re-computed activity flow mapping (across all conditions

for a given functional complex) with source regions iteratively restricted by CAB-NP network

assignment. Note that these values exactly summed to the whole-cortex, activity flow mapping,

thus this approach simply parsed a given mapping into its network components. Then, we

conducted multiple linear regression (per participant, across conditions), where network-level

mapped activations were the predictor variables (12 in total), and actual activity was the

response variable. Following dominance analysis, this yielded the “full model” explained vari-

ance (R2), which in the present study refers to the proportion of variance in the actual response

profile explained by the network-based, mapped response profile. An iterative subset of multi-

ple regression models were then performed, with all combinations of predictors tested. These

can be thought of as subset models because they were iterated on choosing one through eleven

predictors, and performing multiple regression on all combinations therein (procedural details

Fig 3. Mapped activations across all HCP conditions yielded response profiles for four functional complexes of

interest. (A) Causally confounding graph patterns in standard FC estimation methods (adapted with permission from

[127]). CombinedFC incorporates both bivariate and multiple regression measures such that confounders, chains, and

colliders are accounted for. (B) The cross-participant (n = 176) average resting-state connectivity matrix (estimated via

combinedFC) of 360 MMP regions [56], ordered along each axis per the Cole Anticevic brain-wide network partition

(CAB-NP [25]; color-coded on each axis to match panel C). This was the functional network organization utilized in

the present study for activity flow mapping. Note that our implementation of combinedFC used multiple regression as

the final step, and therefore FC estimates were given by beta coefficients (see Methods). (C) Cortical schematic of the

CAB-NP and its 12 functional networks from Ji et al. [25], reproduced with permission. (D) Response profiles (across

all 24 HCP conditions) of four complexes of interest to the present study (indicated along the y-axis; note that “r”

stands for right hemisphere); mapped versus actual (left and right respectively; mean across participants depicted in

each panel). Black boxes highlight the n-back conditions that maintained visual semantic category embeddings

germane to a given functional complex (e.g., 0-back bodies and 2-back bodies for the right EBA and right FBA).

Activity-flow-mapped response profiles were highly accurate, suggesting that mapped activation patterns of the

functional complexes of interest were reliable across multiple cognitive domains.

https://doi.org/10.1371/journal.pcbi.1012507.g003
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are openly available, and can be found here: github.com/dominance-analysis/dominance-

analysis). This followed a standard combination calculation, nCr, where n was the full number

of predictors, or 12, and r was iterated between one and eleven (note that r = 12 describes the

full model). In the present study, there were a total of 4095 subsets of models for each func-

tional complex assessed. The incremental contribution of each predictor to R2 was quantified

for each of these subsets of models. Then, the cross-model average of these incremental contri-

butions was taken as the partial R2 of each network, which added up to equal the full model R2.

Given this property of dominance analysis (that the partial R2 values add up to the full R2), the

percentage of relative importance of each network was calculated as the partial R2 divided by

the full R2, times 100. The dominance analysis approach has the benefit of being robust to mul-

ticollinear predictor variables [134] (i.e., estimating unmixed partial R2).

Control analyses

Assessing the impact of resting-state connectivity fingerprints. To assess how critical

each functional complex’s unique connectivity fingerprint (as in [13,15]) was to respective

visual category selectivity results, we performed an FC substitution experiment. For each target

functional complex (and per participant), we substituted each complex’s connectivity finger-

print with each other functional complex’s fingerprint, then recomputed category selectivity

(see above, “Category selectivity”). This meant that for each of the four original, or true, map-

pings (bodies, faces, places, and tools), there were three null model comparisons. For example:

original body complex rsFC substituted with (1) face complex rsFC, (2) place complex rsFC,

and (3) tool complex rsFC (repeated likewise for each original model). To preserve an essential

property of the connectivity graphs used in the present study, we set self-connections to zero

(e.g., right EBA/FBA target to right EBA/FBA source) (for more on constraint considerations

for network null models, see [135,136]). Additionally, to account for the zero FC weights that

were in the null functional complex’s self-connection locations, we set connectivity estimates

between the original target complex and the null model complex with the transposed estimate,

per hemisphere (e.g., right EBA/FBA target to right FFA/pSTS source set with right FFA/pSTS

target to right EBA/FBA source). We performed paired samples t-testing to test the alternative

hypothesis that the true mapped category selectivity was greater than the null mapped category

selectivity (for each of the four visual categories and in each of the three respective FC substitu-

tion null models).

Assessing the impact of other category-responsive regions. We aimed to assess the

potentially circular influence of regions excluded from functional complexes (see “Identifica-

tion of functional complexes” above) that still exhibit responsiveness to visual categories in the

literature. Such regions could, in principle, become the source of category selectivity for our

target regions, rather than activity flows from non-category-selective regions. Note that the

V1-initiated models (Fig 1B–1D; described in the next sections) were robust to this issue,

given that all category selectivities had to originate (directly or indirectly) from activity flows

originating in V1. The following regions were considered: (1) processing of body images: the

dorsal visuomotor stream [137]; (2) processing of face images: the occipital face area [138–

141], the inferior frontal gyrus [138,142,143], and the orbitofrontal cortex [144,145]; (3) place

processing: the transverse occipital sulcus [146,147]; and (4) tool processing: the middle frontal

gyrus [148,149] and the intraparietal sulcus [150,151]. Note that the middle frontal gyrus (later

referred to as MF) should not be confused with the medial fusiform gyrus (often termed

mFG), which has also been analyzed in prior category selectivity research (such as: [152]).

However, the location of the mFG partially overlaps with the PPA in the core analyses of the

present study (see Table 1). Thus, to avoid overly complex model comparisons, we have not
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analyzed the mFG separately in this control analysis but make note that it is potentially an area

of interest to specific research questions relating to visual category selectivity. In each case we

converted MNI coordinates to surface space (as described in “Identification of functional com-

plexes”) when available, or used topographic information provided by Glasser et al. [56] when

regions were already identified within the MMP atlas (e.g., the orbitofrontal cortex). Note that

an important exclusion criterion that removed these regions from the original definition of a

functional complex was limited representation in the literature. Therefore, category selectivity

in these regions is inherently less validated than the regions we did include. Regardless, cate-

gory selectivity generated by the fully-distributed activity flow processes (Fig 1A) may still

have been driven by these regions being part of the source region sets for corresponding func-

tional complexes. For example: does the occipital face area drive activity-flow-mapped face

selectivity in the FFA/pSTS? For each participant, functional complex, and hemisphere, we re-

ran every step of the fully-distributed model with these regions held out from respective source

sets. Then, we conducted an individual differences regression on the original fully-distributed

category selectivity results against these source-set-limited category selectivity results. The

more correspondence between these (measured by coefficient of determination, R2), the less

likely held-out source regions were impacting the fully-distributed category selectivity

estimates.

Stimulus-driven visual category selectivity

We sought to test the possibility that stimulus-driven activity flow processes conferred by V1

are capable of generating visual category selectivity (Fig 1B). Note that analyses that examined

stimulus-driven (described first below; Fig 1B) and stimulus-driven plus visual network inter-

actions (described second below; Fig 1C) were performed with vertex-level data, then averaged

into functional complexes after estimating category selectivity. The final model, stimulus-

driven plus fully-distributed network interactions (Fig 1D) were initialized with vertex-level

data in a first step, then assessed across region-level averaged data, as detailed in the next sec-

tion titled “Category selectivity generated by stimulus-driven network interactions further

shaped by fully distributed network interactions”. Firstly, we estimated rsFC between all visual

system (i.e., VIS1 and VIS2 network vertices from Ji et al. [25], see “Network analyses” above)

vertices, and refer to this visual sub-system as “VIS” throughout corresponding Results and

Figures. Note that we included all functional complexes in this VIS sub-system. FC was esti-

mated with combinedFC [127] as in prior analyses (see “Resting-state functional connectivity

estimation”), except regularized regression was used instead of multiple regression to scale

edge weights, given that there were more vertices than time points in vertex-level resting-state

data. For each participant and target vertex (i.e., dependent variable or vertex timeseries that

connections were to be estimated with), we used L1 regularized lasso regression with cross-val-

idation across resting-state runs. The penalty term was chosen from a wide sweep of 100 log-

spaced terms. We then conducted a multi-step activity flow mapping procedure. We report

step 1 as the V1, stimulus-driven model, and steps 2+ as the extended VIS model.

In step 1, only activation patterns of source vertices from V1 (both hemispheres), shaped by

their connectivity fingerprints with each VIS vertex (see “Activity flow generative model” and

Formula 1), were used to map the task-evoked activation patterns of each VIS vertex (Fig 1B).

Resulting maps for functional complex vertices were the focus of the step 1 analysis, but the

entire VIS sub-system was mapped because it was later used in steps 2+. Note that cortical

region V1 was identified based on the V1 region identified by Glasser et al. [56] using multi-

modal methods. Cortical V1 vertices were all those inside of the V1 border, with 10 mm dilated

masking applied to activity flow mapping (with VIS) as described previously (see “Resting
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state functional connectivity estimation” and “Activity flow generative model”, Fig 2) to con-

trol for the effects of spatial autocorrelation. When mapping held-out target vertices of each

functional complex, the cross-vertex (i.e., across V1) mean activation value for the correspond-

ing category-specific condition was subtracted from each V1 source vertex to account for the

(unlikely but possible) potential confound that there may still be category-specific information

fed back to V1 from the complex of interest (at the temporal resolution of fMRI). These map-

pings were then used to generate activity in each functional complex, which was then tested

for visual category selectivity (see “Category selectivity” and Formula 2). Note that at this point

in the analysis, category selectivity (actual and activity-flow-mapped) was estimated for each

vertex in each functional complex, then averaged (i.e., average selectivity of vertices in each

complex). Thus, actual category selectivity in corresponding Results slightly varied from the

region-level estimates based on fully distributed mappings (Fig 1A) (which was estimated for

each region, then averaged). Additionally, we removed outliers (using a conservative threshold

of 5 median deviations) as before (see “Category selectivity”). The degrees of freedom are indi-

cated in corresponding Results that report hypothesis testing statistics.

We also performed a control analysis testing whether each functional complex’s unique

connectivity fingerprint with V1 determined its visual category selectivity better than a null

rsFC network model. Here, we randomly permuted the connectivity architectures (per partici-

pant) 100 times but maintained edge strength and degree [136,153,154]. Note that this was

used instead of rsFC substitution (see “Control analyses” above) because there was a variable

number of vertices in each functional complex, and thus they could not be used to substitute

each other’s connectivity fingerprints. Nonparametric estimates of statistical significance given

by Max-T (see “Experimental design and statistical analyses”) were used to compare real

mapped category selectivity to the null network mapped category selectivity.

Then, in steps 2+ (extended VIS) we used the mapped activation patterns from step 1 as the

source activation patterns in activity flow mapping (Formula 1) and extended this to include

all other VIS sub-system source vertices (Fig 1C). We repeated this until a “settling threshold”

was reached. This was to simulate potential feedback and/or recurrent processes (initialized

with stimulus-driven processes) that may occur over VIS network interactions. We defined a

settling threshold as the step when the mapped activation patterns no longer changed within

four decimal point precision, which can be thought of as the beginning of a horizontal asymp-

tote in mapped activation values. We then performed all analyses as we did in step 1, to assess

whether stimulus-driven activity flow processes further shaped by VIS network interactions

improve the generation of visual category selectivity.

Category selectivity generated by stimulus-driven network interactions

further shaped by fully distributed network interactions

Expanding upon the analyses in the previous section (“Stimulus driven category selectivity”),

we sought to test whether V1-initialized activity flow mappings (step 1) that are then processed

over all cortical network interactions (step 2) (Fig 1D) – as opposed to a step 2 that incorpo-

rates only visual subsystems – would accurately generate visual category selectivity. We hence-

forth refer to this as the “stimulus-driven + fully distributed” mapping. Here, modulations

conferred by all other functional networks (e.g., possible top-down effects from source regions

in the dorsal attention network; DAN) were allowed to contribute to activity flow mapping in

a second step. As before, we firstly initialized activity flow mapping with stimulus-driven inter-

actions with V1 (as in “Stimulus-driven visual category selectivity” above). This first step of

activity flow mapping was initialized with vertex-level data as in “Stimulus-driven visual cate-

gory selectivity” above. Then we conducted an additional step that included all cortical source
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regions. Given the computational cost of vertex-level regularized regression (with cross-valida-

tion) across the whole cortex, this second step was performed at the region level. Following

prior analyses, to control for multiple comparisons we used max-T nonparametric permuta-

tion testing (see “Experimental design and statistical analysis”). We used 100,000 permutations

(i.e., p of 0.00001) and report statistical significance in terms of p< 0.00001.

Experimental design and statistical analysis

Each functional complex that was proposed to be highly responsive to the visual categories of

bodies, faces, places, and tools (see above: “Identification of functional complexes”) had esti-

mates for actual activity and activity-flow-mapped activity. For each of these estimates and

each visual category, we contrasted category responses to non-category responses (e.g., body

vs non-body), hypothesizing that a functional complex would exhibit higher activity (in actual

and mapped data) to the category vs the non-category. To test these hypotheses, we used one-

tailed, paired samples t-tests on cross-participant data. For each category of interest, non-cate-

gory activity was the average of the three remaining categories. For example, if body was the

category of interest, responses to faces, places, and tools were averaged for non-body activa-

tions. This provided a consistent contrast across all four sets of analyses (i.e., always category

vs non-category).

In every set of analyses involving a comparison, we used the Max-T nonparametric permu-

tation approach (shuffling conditions over 100,000 permutations – i.e., p-values of

0.00001 – unless otherwise stated) to correct for multiple comparisons [155]. For example, the

Max-T approach was used when testing whether category selectivity scores (Formula 2)

revealed for each functional complex were greater than 1.0 (the null mean), as well as testing

whether estimates of distributed processing contributions (Formula 4) were greater than 50%

(see “Category selectivity” for more on these measures). We likewise used Max-T (here with

10,000 permutations for computational tractability) to address multiple comparisons in the

network-based analyses (i.e., comparing each network-level result to every other network-level

result). When comparing estimates based on each network to every other network, the max-T

threshold statistic that was surpassed for significance is reported, instead of a lengthy list of

observed t-statistics. The max-T procedure was used in any analysis where we could not

assume a normal distribution a priori. Note that for category selectivity and percent distrib-

uted processing analyses, degrees of freedom were based on sample size with outlier partici-

pants removed (see “Category selectivity”). To assess accuracy of the activity-flow-mapped

(Formula 1) results, we compared the actual and activity-flow-mapped activations in each of

the four visual category analyses with Pearson’s r, MAE, and R2 (Fig 2). All findings are

reported for cortical regions in the right hemisphere for the discovery dataset. Left hemisphere

and replication dataset results are reported in S1 Table through S15 Table.

Results

Localized response profiles are captured by activity flow processes

Our preliminary hypothesis was that activity flow processes could accurately map responses in

extensively investigated category-selective visual cortex regions. Firstly, we extended prior

work [20,27,28] by implementing a resting-state functional connectivity (rsFC) method [127]

that estimates a more causally plausible network (Fig 3A and 3B), and by analyzing a large

cohort (N = 352) split into discovery and replication datasets. These updates serve to improve

the inferential validity of activity flow mapping results [18]. Secondly, we quantified response

profiles (also termed population receptive fields) of functional complexes identified as integral

to four visual categories (Tables 1 and 2). A response profile (rows of Fig 3D) was defined as
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the task-evoked activity levels across all 24 HCP conditions. Establishing response profiles

allowed us to verify that each complex was responsive to their respective visual categories (out-

lined in black: Fig 3D, right) and verify that activity flow mapping (Fig 3D, left) was reliable

across a variety of cognitive domains.

Activity-flow-mapped response profiles maintained high accuracy in both hemispheres

(right: r = 0.92, MAE = 3.93, R2 = 0.80; left: r = 0.92, MAE = 3.96, R2 = 0.79; replication dataset:

S1 Table), which corroborates prior findings that activity flow processes (specified by connec-

tivity patterns) can accurately map task-evoked activity in held out brain regions across diverse

cognitive domains [27]. Moreover, this suggests that intrinsic (i.e., resting-state) functional

network organization (Fig 3C) plays a prominent role in generating localized response profiles.

Subsequent analyses examined the processes involved in category-selective responses (i.e.,

focusing on black-outlined conditions in Fig 3D), as generated by activity flow mapping.

Localized visual category selective responses are generated via empirically-

derived models of fully distributed network interactions

We next tested the hypothesis that the classically observed selectivity for visual categories in select

visual cortex regions is shaped by their unique connectivity fingerprints distributed across cortex

(Fig 1A). An emerging literature suggests that network interactions and/or distributed activation

patterns are integral to visual category processing [11,14,93,129]. However, the nature of the net-

work interactions underlying the generation of visual category selectivity remains unclear, as well

as the extent to which those distributed interactions account for localized category selectivity (rela-

tive to local, within-region processes). Here, we sought to test the generative capacity of distrib-

uted network interactions by modeling activity flow processes over intrinsic functional

connections [27]. The four visual category models are reported in separate sections below with

similar formatting to aid cross-comparison. The functional complexes identified based on prior

literature (Fig 4 and Tables 1 and 2) were anatomically positioned along occipital (anterior and

lateral to V1) and temporal (tending posterior and ventral to A1) cortices, which reflects the asso-

ciative processing demands of visual category computations [49,50]. Functional complex regions

belonged primarily to the secondary visual (VIS2) network, with additional locations in dorsal

attention (DAN), default mode (DMN), and language networks (LAN) (Fig 4) [25].

We tested the hypothesis that fully distributed activity flow processes (Fig 1A) – shaped by

the intrinsic functional connectivity fingerprint of each functional complex (Fig 4) – are suffi-

cient to generate category-selective responses without the need for additional within-region

processing. Before this, we began with two confirmations essential for subsequent tests of this

hypothesis. We first constrained prior activity flow mappings [27,28] to body, face, place, and

tool conditions and compared actual versus activity-flow-mapped responses across the whole

cortex (S1 Fig). We then focused on activations in each functional complex (Fig 4) and in each

hemisphere and quantified “benchmark” contrasts to corroborate the literature by comparing

the category of interest versus non-category responses (e.g., body versus non-body) in the

actual and activity-flow-mapped data (note that category selectivity is reported subsequently).

Whole-cortex, activity-flow-mapped responses to visual categories were highly accurate (bod-

ies: r = 0.89, MAE = 5.27, R2 = 0.78; faces: r = 0.86, MAE = 5.83, R2 = 0.72; places: r = 0.88,

MAE = 5.85, R2 = 0.77; tools: r = 0.89, MAE = 5.62, R2 = 0.78; S1 Fig). Significant benchmark

contrasts in each functional complex were also observed in both the actual (bodies: t(175) =

26.65, Cohen’s d = 2.01, faces: t(175) = 20.37, Cohen’s d = 1.54; places: t(175) = 39.53, Cohen’s

d = 2.89; tools: t(175) = 8.49, Cohen’s d = 0.64; all p< 0.0001) and activity-flow-mapped data

(bodies: t(175) = 17.91, Cohen’s d = 1.35; faces: t(175) = 10.06, Cohen’s d = 0.76; places: t(175)

= 26.06, Cohen’s d = 1.88; tools: t(175) = 9.94, Cohen’s d = 0.75; all p< 0.0001) (S2 Fig) (left
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hemisphere and replication: S1 and S2 Tables). In each set of benchmark contrast analyses,

multiple comparisons correction was performed with nonparametric permutation testing (i.e.,

the “max-T” procedure described in the Methods; here, with 10,000 permutations for each set

of analyses).

Fig 4. Visual categories and identified functional complexes. (A) Exemplar stimuli from each of the four visual

semantic categories shown to participants across the n-back task (bodies, faces, places, and tools). Please note that the

face example is a photograph of the author of this manuscript, meant to be representative (but not an exact match) of

the original face stimuli while protecting privacy concerns of the original models. In each category, stimuli varied to

sample a wide array of representations. Body images included whole bodies (no faces) and isolated body parts

(excluding nudity); face images included diverse ages and facial expressions; place images included indoor and

outdoor scenes (and combinations, e.g., a patio); and tool images included distinct items (e.g., plier versus drill) as well

as similar variants (e.g., two drills: one white, one blue). See Barch et al. [47] and www.humanconnectome.org for

further details. (B) A schematic of the cortical surface in three gross orientations, with MMP regions [56]. outlined in

silver and functional complexes relevant to processing body features (see Tables 1 and 2, Methods) colored in based on

CAB-NP network affiliations ([25], Fig 1C) and identified with text labels and arrows. EBA = extrastriate body area;

FBA = fusiform body area. VIS2 = secondary visual network; DAN = dorsal attention network. “r” denotes right

hemisphere; “l” denotes left hemisphere. (C) Functional complexes related to face processing. FFA = fusiform body

area; pSTS = posterior superior temporal sulcus; LAN = language network; DMN = default mode network. (D)

Functional complexes related to places and scenes. RSC = retrosplenial complex; PPA = parahippocampal place area.

(E) Functional complexes related to processing images of tools and objects. LOC = lateral occipital complex.

https://doi.org/10.1371/journal.pcbi.1012507.g004

PLOS COMPUTATIONAL BIOLOGY Human brain network flows generate visual category selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012507 October 22, 2024 21 / 53

http://www.humanconnectome.org/
https://doi.org/10.1371/journal.pcbi.1012507.g004
https://doi.org/10.1371/journal.pcbi.1012507


Distributed activity flowing over intrinsic connectivity generates localized body cate-

gory selectivity. Processing of human body images (Fig 4A) is associated with the fusiform

body area (FBA) and the extrastriate body area (EBA) [2,3,73], which are located in the lateral

occipito-temporal cortex (Tables 1 and 2 and Fig 4B). EBA computations are thought to dis-

criminate between bodily attributes and parts [156] and provide postural information to fron-

toparietal regions [74], indicating a pivotal role in action planning. The FBA is thought to

process images of whole bodies [3] and pairs of body parts [157]. Extending the fully distrib-

uted hypothesis to the processing of body images, we hypothesized that activity flowing via the

intrinsic connectivity fingerprint of the EBA and FBA (henceforth: EBA/FBA) (Fig 5A and 5B)

— its unique pattern of distributed cortical connections—is likely the primary determinant of

its body-selective responses.

We assessed body selectivity in the EBA/FBA—quantified as the ratio of body to non-body

category activations—in both activity-flow-mapped (Fig 5C, purple) and actual (Fig 5C, coral)

data. As expected, mapped and actual body selectivity were statistically significant relative to a

selectivity ratio of 1.0 (i.e., greater than the null hypothesis of equivalent responses to bodies

and non-bodies; p< 0.00001; see Methods): activity-flow-mapped mean body selectivity = 1.35,

t(166) = 16.59, Cohen’s d = 1.29; actual mean body selectivity = 1.67, t(166) = 20.01,Cohen’s

d = 1.55; Fig 5C). We next estimated the contribution of distributed activity flow processes to

body selectivity via the percentage of actual body selectivity captured by mapped body selectiv-

ity (Fig 5D). Given that the fully distributed activity flow approach maps task-evoked activity

based on distributed features ([27]; Fig 2B), this ratio approximates the extent that distributed

network interactions contribute to the generation of body selectivity in the EBA/FBA (relative

to local, within-complex processes and/or error). As expected, the estimated contribution of

distributed activity flow processes was 81%, which was statistically greater than 50%

(p< 0.00001; see Methods) (Cohen’s d = 2.52, t(166) = 32.49, Fig 5D) (left hemisphere and

replication: S3 Table).

Next, we examined how each large-scale functional network (Fig 3C [25]) contributed to

the observation that activity flowing over a fully distributed intrinsic network architecture

(connectivity fingerprint: Fig 5B) shaped body selectivity in the EBA/FBA. The activity flows

map (Fig 5A, step 3) — where source activity was weighted by rsFC with the (held out) target

region—was an entry point to assess such network contributions. Firstly, we averaged the esti-

mated activity flows based on network assignment (Fig 5E). Secondly, we used dominance

analysis to identify each functional network’s unmixed contribution (partial R2, see Methods)

to the activity-flow-mapped response profile (i.e., activations across all 24 conditions, Fig 3D)

of the EBA/FBA (Fig 5F). Secondary visual network (VIS2) activity flows exhibited the largest

contribution (versus each other network) to EBA/FBA’s body-evoked activations (Fig 5E, all t-
statistics above the max-T threshold (175) = 3.39, p< 0.0001; left hemisphere and replication:

S4 Table). DAN activity flows were also significantly higher (same max-T thresholds, see

Methods) than the other networks, except VIS2 and posterior multimodal network (PMM).

VIS2 also accounted for most of the explained variance in EBA/FBA’s response profile (partial

R2 = 0.51, 61% of the full model R2, Fig 5F). DAN accounted for the next highest amount of

explained variance (partial R2 = 0.09, 10% of the full model R2, Fig 5F; left hemisphere and rep-

lication: S5–S7 Tables). Thus, for both body-specific conditions and across all conditions (i.e.,

response profile), activity flowing over VIS2 and DAN exhibited substantial contributions to

EBA/FBA activation patterns.

As hypothesized by the fully distributed network interaction model (Fig 1A), we found evi-

dence that activity flowing over resting-state functional connections distributed throughout

cortex shaped body selectivity in the EBA/FBA. Results also suggested that distributed pro-

cesses chiefly specified localized body-selective responses in the EBA/FBA. The total explained
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Fig 5. Distributed activity flows account for the majority of localized selectivity to bodies. (A) The activity flow

mapping procedure (steps match Fig 2C) generating body responses in EBA/FBA (black), projected onto cortical

schematics (right hemisphere). Green: source vertices excluded from analyses. Step 2 was not blacked out for visual

comparison with step 4, however it was held out in-analysis. Step 4 color scale shows maximum of all regions’ mapped

activations to body images for visual comparison with step 2. (B) The connectivity fingerprint [13,15] of the right EBA/

FBA via rsFC (black lines). Radial lines: source regions connected to EBA/FBA, clustered by functional network

assignments [25] (colored per legend; Fig 3C). 95% confidence interval: across participants. (C) Right EBA/FBA body

selectivity: activity-flow-mapped (purple) and actual (coral). Gray dots: individual participants’ scores. Dashed line: no

selectivity (1.0); used for comparison in statistical tests. Significant t-statistics are indicated with an asterisk

(p<0.00001; see Methods). (D) Estimated contribution of distributed network interactions to body selective responses

in EBA/FBA. (E) The activity flows (as in A3) of each source region contributing to mapped EBA/FBA responses to

body images (statistical significance asterisks at network-mean level). (F) Variance explained by each network-

restricted activity flow model (unmixed partial R2 in gray) of EBA/FBA’s response profile. Black lines: 95% confidence

interval across participants. Asterisks: statistical significance versus each other network. E-F suggests that activity

flowing over interactions with VIS2 and DAN represents a general network coding mechanism for EBA/FBA. See

Methods for full details of each analysis.

https://doi.org/10.1371/journal.pcbi.1012507.g005
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variance in the EBA/FBA’s 24-condition response profile was significantly greater than 50%

(total R2 = 0.83, versus 0.5: t(175) = 66.07, p = 1.14 x 10−125; left hemisphere and replication:

S5–S7 Tables), suggesting that distributed activity flow processes predominantly influence

EBA/FBA responses across a variety of cognitive domains.

Distributed activity flowing over resting-state connectivity generates localized face cate-

gory selectivity. The fusiform face area (FFA) is a hallmark region exhibiting localized cate-

gory selectivity given its well-replicated relationship with face processing [4, 51]. The posterior

superior temporal sulcus (pSTS) is thought to be a multisensory processing region responsive

to the changeable aspects of faces [21,158]. The FFA and pSTS are loci of specialization in a

two-pathway model [89,93], representing facial identity (relatively invariant) and facial expres-

sion (dynamic), respectively [11,94]. While both the FFA and pSTS are part of the ventral tem-

poral cortex, the pSTS is more dorsal and lies adjacent to the temporoparietal junction; the

FFA is more posterior and typically identified on the ventral aspect of the cortex (i.e., the fusi-

form gyrus) (Tables 1 and 2 and Fig 4C). Extending the fully distributed hypothesis (Fig 1A) to

the processing of face images, we hypothesized that activity flow processes via the whole-cor-

tex, resting-state connectivity fingerprint of the FFA and pSTS (Fig 6A and 6B) (henceforth:

FFA/pSTS) is sufficient to determine its face selective responses.

We followed the foregoing pipeline for body selectivity exactly, except analyzing face images

and the FFA/pSTS (Fig 6A, black regions). Overall, as expected, the pattern of results observed

for body processing (EBA/FBA) extended to face processing (FFA/pSTS). Significant face

selectivity was observed in both the actual and activity-flow-mapped data (mapped mean face

selectivity = 1.33, t(170) = 10.78, Cohen’s d = 0.83; actual mean face selectivity = 1.37, t(170) =

11.67, Cohen’s d = 0.89; p< 0.00001; Fig 6C), and the estimated contribution of distributed

activity flow processes was 96% (t(170) = 29.61, Cohen’s d = 2.27, p< 0.00001; Fig 6D) (left

hemisphere and replication: S3 Table). We found that face activations in the FFA/pSTS were

most influenced by activity flows over VIS2 connections (max-T threshold (175) = 3.39,

p< 0.0001; Fig 6E; left hemisphere and replication: S4 Table). VIS2 also accounted for the

most variance in FFA/pSTS processing at the response profile level (40%; left hemisphere and

replication: S5–S7 Tables).

These results suggest that face selectivity in the FFA/pSTS was significantly shaped by activ-

ity flow processes over a fully distributed intrinsic network architecture. These processes were

most prominently influenced by activity flowing over VIS2, similar to the EBA/FBA. Across all

conditions, activity flowing over dorsal attention (DAN) and default mode (DMN) network

connections were predictive as well (DAN: 11%, DMN: 9%). The total explained variance in

this response profile model (Fig 6F) was R2 = 0.89 (versus 0.5: t(175) = 92.61, p = 1.32 x 10−150;

left hemisphere and replication: S5–S7 Tables), suggesting that distributed processes chiefly

influenced FFA/pSTS responses across many cognitive domains.

Distributed activity flowing over intrinsic connectivity generates localized place cate-

gory selectivity. We next focused on place images (Fig 4A), sometimes termed scenes, envi-

ronment, or topography. Place-specific regions include the parahippocampal place area (PPA)

and the retrosplenial cortex (RSC) (Tables 1 and 2 and Fig 4D), which are thought to act coop-

eratively toward a cohesive percept [5,99,103]. The PPA is thought to compute viewpoint-spe-

cific discrimination [159], as well as mediating (or binding) contextual associations pertinent

for episodic memory [160]. The RSC is thought to provide the medial temporal lobe with

visuospatial information [161], and to integrate viewpoint-invariant information for naviga-

tion and learning [5]. The PPA consisted of previously identified regions [53], and the dorsal

RSC corresponded to Brodmann areas 29 and 30 [162] (Fig 4D). Extending the fully distrib-

uted hypothesis (Fig 1A) to the processing of place images, we hypothesized that activity flow
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Fig 6. Distributed activity flows account for the majority of localized selectivity to faces. All figure specifications

follow Fig 5. (A) The activity flow procedure mapping activations to face categories, projected onto cortical schematics

(right hemisphere). Right FFA/pSTS was the held-out target complex. (B) The connectivity fingerprint [13,15] of the

right FFA/pSTS via whole-cortex rsFC (black lines). Radial lines: source regions connected to the FFA/pSTS, clustered

by functional network assignments [25] (colored per legend and Fig 3C). (C) Face category selectivity exhibited by the

right FFA/pSTS. Significant t-statistics are indicated with an asterisk (p<0.00001; see Methods). (D) Estimated

contribution of distributed activity flow processes to face selectivity exhibited by the right FFA/pSTS. (E) Activity flows

(as in A step 3) of each source region contributing to the mapping of FFA/pSTS responses to face images. VIS2 regions

contributed most to the FFA/pSTS mapped activation magnitude to faces. (F) Variance explained by each network-

restricted activity flow model (unmixed partial R2 via dominance analysis; Methods) of the right FFA/pSTS’ response

profile. VIS2 accounted for the most variance, altogether suggesting that activity flowing over VIS2 regions represents

a general network coding mechanism for FFA/pSTS processing. DAN and DMN regions also accounted for a

nontrivial amount of variance at the response-profile level suggesting that, across diverse cognitive domains, FFA/

pSTS processing is impacted by activity flowing over DAN and DMN regions, in addition to VIS2 (in the face-specific

case).

https://doi.org/10.1371/journal.pcbi.1012507.g006
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via the whole-cortex, resting-state connectivity fingerprint of the PPA and RSC (Fig 7A and

7B) (henceforth: PPA/RSC) significantly determines its place-selective responses.

Significant place selectivity was observed in the PPA/RSC (mapped mean place selectiv-

ity = 1.8, t(170) = 19.15, Cohen’s d = 1.49; actual mean place selectivity = 2.59, t(170) = 22.42,

Cohen’s d = 1.74; p< 0.00001; Fig 7C), and the estimated contribution of distributed processes

was 69% (versus 50%: t(170) = 14.87, Cohen’s d = 1.15, p< 0.00001; Fig 7D) (left hemisphere

and replication: S3 Table). Activity flowing over VIS1, VIS2, and DAN provided the largest

contributions to PPA/RSC’s place activations (all significant except when compared to each

other: max-T threshold (175) = 3.4, p< 0.0001; Fig 7E) (left hemisphere and replication: S4

Table). A similar set of networks accounted for the most variance at the response profile level

(Fig 7F), including VIS2 (44%), DAN (13%) and DMN contributions (21%) (left hemisphere

and replication: S5–S7 Tables).

As hypothesized by the fully distributed model of Fig 1A, the whole-cortex connectivity fin-

gerprint of the PPA/RSC significantly shaped its place selectivity. PPA/RSC responses were

influenced by activity flowing over VIS2 and DAN. Additionally, VIS1 was particularly impor-

tant for place-specific activity; and DMN for cross-domain activity (Fig 7E and 7F), suggesting

that PPA/RSC’s activity flow processes were more heterogeneous than prior models. The total

variance in the PPA/RSC response profile explained by activity flow processes (Fig 7F) was

greater than 50% (total R2 = 0.68; t(175) = 23.93, p = 4.51 x 10−57; left hemisphere and replica-

tion: S5–S7 Tables), which provides evidence that distributed processes predominantly influ-

enced PPA/RSC activations to a variety of cognitive domains.

Distributed activity flowing over intrinsic connectivity generates localized tool category

selectivity. The final visual category included tool images (Fig 4A), sometimes termed inani-

mate objects. Following an extensive literature on object recognition [54,163], we hypothesized

that tool selectivity is exhibited by the lateral occipital complex (LOC) [21,164], which is poste-

riorly located and wraps around the cortex in the ventromedial direction (Fig 4E). The LOC is

thought to represent higher-level information of objects, as opposed to low level visual features

[165], suggesting a role at the category level of visual processing. However, reports vary on the

degree of semantic content processed by the LOC [166]. Thus, the link between the LOC and

tool selectivity was the least clear (of all four models) a priori. Extending the fully distributed

hypothesis (Fig 1A) to the processing of tool images, we hypothesized that activity flow via the

whole-cortex, resting-state connectivity fingerprint of the LOC (Fig 8A and 8B) significantly

determines its tool selective responses.

Tool selectivity in the LOC was statistically significant (mapped tool selectivity = 1.12, t
(174) = 11.65, Cohen’s d = 0.88; actual tool selectivity = 1.15, t(174) = 12.52, Cohen’s d = 0.95;

p< 0.00001; Fig 8C), and the estimated contribution of distributed activity flow processes to

tool selectivity in the LOC was particularly high at 97% (t(174) = 111.44, Cohen’s d = 8.45; Fig

8D) (left hemisphere and replication: S3 Table; given evidence in the literature that tool selec-

tivity is left lateralized, future work building on activity-flow-mapped tool selectivity should

pay special attention to the tool processing results reported in S2 Table through S15 Table).

VIS2 activity flows demonstrated a strikingly high contribution to LOC’s tool-specific

responses (max-T threshold (175) = 3.4, p< 0.0001; Fig 8E) (left hemisphere and replication:

S4 Table) and accounted for the majority of the variance in LOC’s response profile (79%; Fig

8F) (left hemisphere and replication: S5–S7 Tables).

As hypothesized, tool selectivity was strongly influenced by distributed activity flow pro-

cesses (97–98%). As in all other models (bodies, faces, and places) the total explained variance

that activity flow mapping captured for the LOC response profile was greater than 50% (total

R2 = 0.90 vs 0.5: t(175) = 115.55, p = 3.71 x 10−167). Given that the standard application of

activity flow mapping [27,28] (i.e., following the fully distributed network interaction scheme
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Fig 7. Distributed activity flows account for the majority of localized selectivity to places. All formatting and figure

specifications follow Fig 5 (A) Activity flow mapping of activations to place categories, projected onto cortical

schematics (right hemisphere only). Right PPA/RSC was the held-out target complex. (B) The connectivity fingerprint

of the right PPA/RSC, as in Passingham et al. [13] except with whole-cortex rsFC (black lines). Radial lines: source

regions connected to the PPA/RSC, clustered by CAB-NP functional network assignments [25] (colored per legend

and Fig 3C). (C) Place category selectivity exhibited by the PPA and RSC in the right hemisphere. Significant t-

statistics are indicated with an asterisk (p<0.00001; see Methods). (D) Estimated contribution of distributed activity

flow processes to the emergence of place selective responses in the right PPA/RSC. (E) Activity flows (as in A step 3) of

each source region contributing to the mapping of PPA/RSC responses to place images. VIS1, VIS2 and DAN

contributed most to the right PPA/RSC mapped activation magnitude to place categories. Note that VIS1, VIS2, and

DAN were all statistically greater than each other network, except for each other. (F) Variance explained by each

network-restricted activity flow model (partial R2 via dominance analysis; Methods) of the right PPA/RSC’s response

profile. VIS2, DAN, and DMN accounted for the most variance, suggesting that activity flowing over regions in these

networks represents a general network coding mechanism for PPA and RSC processing, while VIS1 contributes to

place-specific responses.

https://doi.org/10.1371/journal.pcbi.1012507.g007
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Fig 8. Distributed activity flows account for the majority of localized selectivity to tools. All formatting and figure

specifications as in Fig 5. (A) Activity flow mapping of activations to tool categories in the held-out target—the right

LOC—projected onto cortical schematics (right hemisphere). (B) The connectivity fingerprint of the right LOC, as in

Passingham et al. [13] except with whole-cortex rsFC (black lines). Radial lines: source regions connected to the LOC,

clustered by CAB-NP functional network assignments [25] (colored per legend and Fig 3C). (C) Tool category

selectivity exhibited by the LOC in the right hemisphere. Significant t-statistics are indicated with an asterisk

(p<0.00001; see Methods). (D) Estimated contribution of distributed activity flow processes to the emergence of tool

selective responses in the right LOC. (E) Activity flows (as in A step 3) of each source region contributing to the

mapping of LOC responses to tool images. VIS2 contributed most to the right LOC mapped activation magnitude to

tool categories (F) Variance explained by each network-restricted activity flow model (partial R2 via dominance

analysis; Methods) of the right LOC’s response profile. VIS2 accounted for the most variance, suggesting that activity

flowing over regions in these networks represents a network coding mechanism for LOC processing.

https://doi.org/10.1371/journal.pcbi.1012507.g008
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of Fig 1A) is a distributed processing model (Fig 2B), this suggests that distributed processes

may be the primary mechanism generating category-selective LOC activations.

Control analyses

Null connectivity fingerprints reduce visual category selectivity. To corroborate that

each functional complex’s unique whole-cortex resting-state connectivity fingerprint (Figs

5B–8B) — its placement in the brain’s intrinsic network architecture—determined its visual

category selectivity (Figs 5C–8C), we built null models based on FC substitution. We hypothe-

sized that a null connectivity fingerprint – here defined as a fingerprint based on the wrong

functional complex – would confer significantly lower activity-flow-mapped category

selectivity.

As hypothesized, visual category selectivities were significantly greater when based upon

the true (i.e., empirically-based) whole-cortex connectivity fingerprints (Table 3, reporting

right hemisphere functional complexes and the discovery dataset). This assessment is more

stringent than a null model that randomly scrambles FC because there is likely some similarity

in visual processing (and therefore activity flow patterns) across the four functional complex’s

fully distributed network interactions. However, no substituted connectivity fingerprint was

sufficiently similar to the true fingerprint to generate the original mapped category selectivity.

Table 3. Empirical (true) resting-state connectivity fingerprints generate visual category selectivity significantly

better than null model connectivity fingerprints.

Comparison t(175) p-value Cohen’s d
True model body selectivity > null model body selectivity when rEBA/rFBA rsFC

was substituted with:

face complex connectivity fingerprint: rFFA/rpSTS rsFC 6.36 1.7 x 10−9 0.61

place complex connectivity fingerprint: rPPA/rRSC rsFC 3.53 0.0005 0.37

tool complex connectivity fingerprint: rLOC rsFC 11.34 1.1 x

10−22
1.16

True model face selectivity > null model face selectivity when rFFA/rpSTS rsFC was

substituted with:

body complex connectivity fingerprint: rEBA/rFBA rsFC 8.21 4.7 x

10−14
0.81

place complex connectivity fingerprint: rPPA/rRSC rsFC 21.45 7.1 x

10−51
2.11

tool complex connectivity fingerprint: rLOC rsFC 14.95 4.4 x

10−33
1.48

True model place selectivity > null model place selectivity when rPPA/rRSC rsFC

was substituted with:

body complex connectivity fingerprint: rEBA/rFBA rsFC 14.02 2.1 x

10−30
1.50

face complex connectivity fingerprint: rFFA/rpSTS rsFC 14.46 1.1 x

10−31
1.44

tool complex connectivity fingerprint: rLOC rsFC 11.87 2.3 x

10−24
1.20

True model tool selectivity > null model tool selectivity when rLOC rsFC was

substituted with:

body complex connectivity fingerprint: rEBA/rFBA rsFC 2.74 0.007 0.23

face complex connectivity fingerprint: rFFA/rpSTS rsFC 9.97 7.8 x

10−19
0.91

place complex connectivity fingerprint: rPPA/RSC rsFC 2.06 0.04 0.22

The prefix “r” indicates the right hemisphere. rsFC = resting-state functional connectivity

https://doi.org/10.1371/journal.pcbi.1012507.t003
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Each of these results were corroborated in the left hemisphere and in the replication dataset

(S8 and S9 Tables). These results corroborate that the fully distributed, resting-state connectiv-

ity fingerprint unique to each functional complex significantly shaped its visual category selec-

tive response. Given that connectivity fingerprints are the bases of activity flow processes (Fig

1A, Formula 1) that were used to generate mapped category selectivity, these results further

support the proposition that fully distributed network interactions are sufficient to generate

localized visual category selectivity in all four functional complexes tested.

Activity-flow-mapped category selectivity was not driven by category responsiveness in

other parts of the brain. A potential confound in our analysis pipeline was that the criteria

for identifying functional complexes (see Methods) excluded some brain regions that also

exhibit a degree of visual category selectivity and/or responsiveness (Fig 9A). Therefore, it is

possible that the findings in the preceding sections – that fully distributed activity flow pro-

cesses are capable of generating localized visual category selectivity – were driven by these

other, excluded regions (which remained as sources of task-evoked activity). To address this,

we held out select regions (Fig 9A) from the source sets of each visual category selectivity anal-

ysis and compared such source-set-controlled findings to the fully-distributed model findings

(Figs 1A and 5–8). Individual differences in selectivity were preserved across all visual catego-

ries (Fig 9B), suggesting that activity flow processes were capable of generating visual category

selectivity in each functional complex without the influence of other visual category responsive

Fig 9. Other regions associated with visual category responses in the literature do not drive the fully-distributed model

results. (A) While our procedure for identifying functional complexes from the literature was systematic (see Methods), it

was possible that excluded, category-responsive regions were driving the results in Figs 5–8. Such regions were excluded from

functional complexes because they were either: (1) not supported by 10 or more peer-reviewed studies at the time of

preparing this manuscript, (2) studies used experimental stimuli too distinct from the n-back visual categories, or (3) studies

did not provide spatial information systematically consistent with standard volumetric and/or surface-based topography.

These regions, held-out from source sets in this control analysis, were as follows (from left to right in panel A): the dorsal

visuomotor stream for body selectivity; the occipital face area (OFA), inferior frontal gyrus (IFG), and orbitofrontal cortex

(OFC) for face selectivity; the transverse occipital sulcus (TOS) for place selectivity; the intraparietal sulcus (IPS) and middle

frontal gyrus (MF) for tool selectivity. Colors of regions are consistent with the functional network assignment used

throughout all other figures. (B) For each body, face, place, and tool (left to right) selectivity analysis, individual participant’s

(dots) visual selectivity scores were maintained between the results in Figs 5–8 (x-axes) and the same analyses with the

regions in panel A held-out from the source set. This suggests that other category responsive regions in the literature did not

drive the fully-distributed model findings.

https://doi.org/10.1371/journal.pcbi.1012507.g009
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regions. Note that the following sections on stimulus-driven network interactions more fully

address this circularity concern, while also testing refined versions of our core hypothesis.

Stimulus-driven activity flow processes directly from V1 are sufficient for

generating category selectivity

We next sought to test the refined hypothesis that stimulus-driven activity flowing over a func-

tional complex’s connectivity fingerprint with V1 only is sufficient to generate localized visual

category selectivity (Figs 1B and 10A). This does not negate the “fully distributed” hypotheses

tested above (Fig 1A), but instead specifies that processes instantiated in V1 are key to our

prior observations that fully distributed activity flows are sufficient for generating localized

visual category selectivity. Alternatively, it is possible that network interactions with V1

account for only a small proportion of variance in visual category selectivity generated by the

Fig 10. Activity flows directly from V1 are sufficient to generate visual category selectivity. (A) Theoretical schematic of stimulus-

driven activity flow processes generating visual category selectivity (as in Fig 1B). Given prior literature, mapped activity flow processes

(gray arrow) have a refined inference: from V1 to later visual regions, we inferred that activity flow processes were primarily stimulus

driven. This contrasts with the prior whole-cortex models, which also included top-down and likely recurrent influences. (B) Activity

flow mapping procedure for the stimulus-driven model, conducted at the vertex level. V1 sources were used to map targets across VIS.

Note that the usage of “step 1” serves as a prelude to later steps tested in an extended visual system model (Fig 11). (C) The null

connectivity fingerprint (rsFC) model used for control analyses. The top depicts the true VIS network, and the bottom depicts pseudo-

random (edge degree and strength preserved) network architectures over 100 permutations. For visualization purposes, networks are

shown at the region level, but analyses were conducted at the vertex level. (D) Actual (coral) and mapped (purple) visual category

selectivity exhibited by the right EBA/FBA, FFA/pSTS, PPA/RSC, and LOC (left to right). Category selectivity exhibited by V1 (for each

respective image category) is shown to demonstrate that activation patterns in V1 alone do not account for mapped visual category

selectivities (V1 selectivity scores were all nonsignificant; see main text for statistics). Most importantly, these results demonstrate that

the activity flow mapping process increased the category selectivity of every functional complex relative to V1 activity patterns, despite

source activity originating solely from V1. Category selectivity generated by V1-initialized activity flow processes were significant in each

functional complex (see main text for statistics). Significant t-statistics are indicated with an asterisk (p<0.00001; see Methods); see Figs

5–8 for significance of actual category selectivity of functional complexes.

https://doi.org/10.1371/journal.pcbi.1012507.g010
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fully distributed network interaction models (Figs 5–8). For example, it remains possible that

the category selectivities observed in the fully distributed model were generated via (1) local

(e.g., within-region) computations in regions outside the functional complexes, which (2)

together flow into the functional complexes, concentrating selectivity within the complexes.

Another possibility is that visual category selectivity is only minimally influenced by direct

stimulus-driven inputs from V1, given evidence that visual information processing (which

may not be strictly hierarchical; see [167, 168]) is modulated by attention [169–171], prior

expectations [172], task goals/context [173–175], and synthesis-related processes (i.e., continu-

ously maintaining a percept from a noisy or ambiguous visual scene) [176–178]. However, it is

unclear if these top-down modulations (and other non-visual contributions, such as emotional

modulation; as in [179]) are indeed just modulations, or requirements for visual category

selectivity.

We additionally sought to address a theoretical limitation borne out of whole-cortex, undi-

rected network estimation from fMRI data. Namely, a limited ability to isolate whether activity

flow processes contributing to a given complex’s category-selective response also contain some

information from that complex itself, or from other brain regions responsive to visual catego-

ries. For example, do fully distributed activity flows generating FFA/pSTS face selectivity (Fig

6) contain some information (potentially via feedback from areas downstream of FFA/pSTS)

from the FFA/pSTS itself? This type of causal circularity is a theoretical concern for the ongo-

ing goal of delineating the extent that network interactions contribute to the generation of

localized processes with refined detail. However, given that regions within each functional

complex (e.g., the FFA and pSTS for the FFA/pSTS complex) were excluded as activity flow

sources, the most likely culprits of this sort of feedback circularity were already accounted for.

Thus, it is likely that the fully distributed network models (Figs 5–8) accurately reflect the gen-

eration of category selectivity, just at a broad scale and with potential inferential limits.

To these ends, we developed an intrinsic-connectivity-based, generative model of category-

selective responses that reduces the impact of (potential) causal circularity by constraining

activity flows to V1 (sources) and functional complexes (targets) (Fig 10A and 10B). Given

robust evidence that activity in V1 represents retinotopic mapping and simple visual feature

detection [42,43], this model better ensures that mapped activation patterns are primarily

stimulus-driven. We first estimated rsFC between all vertices in the visual system (including

both the VIS1 and VIS2 networks and all functional complexes) (Fig 10C, top). We will hence-

forth refer to this sub-system as “VIS”. In the following steps of this analysis, we focused on the

interactions between V1 sources and functional complex targets, but it was important to

include the entire visual system in the initial rsFC estimation step. This allowed us to

infer – based on our use of multiple regression for rsFC estimation – the likely direct connec-

tivity between each V1 vertex and each functional complex vertex [27, 127].

We found that for each functional complex, stimulus-driven, activity-flow-mapped cate-

gory selectivity was significantly above 1.0 (p< 0.00001 for all complexes; see Methods): right

hemisphere EBA/FBA mean body selectivity = 1.12, t(174) = 5.64, Cohen’s d = 0.45); right

FFA/pSTS mean face selectivity = 1.14, t(172) = 5.07, Cohen’s d = 0.41); right PPA/RSC mean

place selectivity = 1.13, t(173) = 5.27, Cohen’s d = 0.42); right LOC mean tool selectivity = 1.07,

t(172) = 5.41, Cohen’s d = 0.3) (Fig 10D; left hemisphere and replication dataset: S10 Table). In

each of these four models, mapped category selectivity was statistically significant, suggesting

direct activity flows from V1 (the primary visual input to cortex) are sufficient to produce

selectivity for these four visual categories. Note, however, that selectivity in these four models

was lower than when mapped via network interactions of the whole cortex. This suggests that

additional selectivity is generated via distributed activity flow processes over the whole cortex

(Figs 5C–8C).
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As in prior control analyses (Table 3), we tested whether each functional complex’s unique

resting-state connectivity fingerprint (here, with V1) determined its visual category selectivity

by using a null rsFC model. Note that V1 itself did not exhibit significant selectivity for any of

the four visual categories (V1 body selectivity = 0.63, t(175) = -17.3, p = 1, Cohen’s d = -1.32;

face selectivity = 0.87, t(175) = -12.9, p = 1, Cohen’s d = -0.99; place selectivity = 0.64, t(175) =

-13.6, p = 1, Cohen’s d = -1.04; tool selectivity = 0.66, t(175) = -12.8, p = 1, Cohen’s d = -0.97)

(Fig 10D; replication dataset: S11 Table), thus downstream selectivity could not be driven by

activation patterns in V1 without additional connectivity-based transformation (also sup-

ported by [115,180–182]). Given the varied number of vertices in each complex, we used ran-

domly permuted connectivity architectures (Fig 10C) – maintaining edge strength and degree

[136,153,154] – instead of rsFC substitution. Body, face, and place selectivity were significantly

greater than the aggregate of 100 null rsFC models (body: t(175) = 6.4, p = 6.6 x 10−10, Cohen’s

d = 0.49; face: t(175) = 11.6, p = 8.2 x 10−24, Cohen’s d = 0.89; place: t(175) = 3.5, p = 2.5 x 10−4,

Cohen’s d = 0.27), but not tool selectivity (t(175) = -1.15, p = 0.8, Cohen’s d = -0.09) (left hemi-

sphere and replication dataset: S12 Table). This suggests that stimulus-driven category selectiv-

ity exhibited by EBA/FBA, FFA/pSTS, and PPA/RSC were significantly shaped by their unique

connectivity patterns with V1.

These results suggest that direct stimulus-driven activity flows from V1 are a key step in the

generation of visual category selectivity in visual cortex (Fig 1B). For some functional com-

plexes, such as the LOC, early information patterns across V1 can select category-selectivity-

generating activity flow processes in a manner less dependent on its connectivity fingerprint

(but note that LOC’s connectivity fingerprint with V1 appears more critical in the whole-cor-

tex model; Table 3). For other complexes such as the FFA/pSTS, the stimulus-driven account

of category selectivity appears to be influenced to a large extent by its connectivity fingerprint

with V1, given its strong statistical significance over the null rsFC model.

Multi-step activity flows across the visual system improves response profile

accuracies, but not category selectivity

Given evidence that higher-level visual representations (such as category selectivity) involve

information processing along the ventral visual stream (Fig 11A) [88,183,184], we sought to

extend our stimulus-driven model and test the hypothesis that category selectivity mappings

(which were significant but below empirically-observed levels in the V1 model) improve when

accounting for all VIS network interactions (Fig 1C). We conducted this analysis using the

mapped activation patterns from the stimulus-driven V1 model (Figs 10B and 11B) – weighted

by rsFC across VIS – to model later visual cortex activity flow processes (Fig 11B, Step 2). This

step was repeated to model potential bidirectional (i.e., reciprocal) and/or recurrent processes

within the visual system [168,184] (Fig 11B, Steps 3+), until a settling threshold was reached

(i.e., where mapped activation patterns no longer changed, Fig 11C; also see Methods).

Cross-condition (i.e., response profile) mapping accuracy (of all VIS vertices) increased

with each step (Fig 11D), suggesting that this extended model improved the specification of

visual system responses. However, category selectivity was not improved consistently across

functional complexes of interest. Mapped body selectivity in the right EBA/FBA was improved

in step two (body selectivity = 1.18, t(170) = 9.49, p< 0.00001, Cohen’s d = 0.75) but became

nonsignificant in step three (body selectivity = 1.01, t(174) = 0.58, Cohen’s d = 0.03) (Fig 11E).

Face selectivity diminished in step 2 (face selectivity = 1.03, t(174) = 1.82, not significant,

Cohen’s d = 0.14) and step 3 (face selectivity = 0.9, t(167) = -9.23, not significant, Cohen’s d =

-0.71) (Fig 11F), suggesting that within the confines of the visual system, stimulus-driven activ-

ity flows from V1 (step 1) were the best predictors of right FFA/pSTS face selectivity. Place
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Fig 11. Visual category selectivity generated by activity flow processes over the extended visual system. (A) Stimulus driven activity

flow processes, further shaped by later visual interactions, generate localized visual category selectivity (Fig 1C). From V1 to later visual

regions, we inferred that activity flow processes are stimulus driven (Figs 1B and 10). Within the visual system, we inferred that activity

flow processes are bidirectional and/or recurrent. (B) Activity flow mapping procedure for the extended visual system model. All steps

were conducted at the vertex level. Step 1: V1 sources were used to map targets across the visual cortex (VIS) (Fig 10). Step 2: mapped

VIS activation patterns from Step 1 (weighted by connectivity estimates as in all activity flow models; see Methods) were used as sources

to map held-out targets across visual cortex. Steps 3+: step 2 was repeated until a settling threshold was reached – or the point at which

mapped values stopped changing (see Methods). (C) The settling threshold was reached at step 3. All further analyses only included steps

1–3 from panel B. (D) Accuracy of mapped activation patterns across all conditions (left: an average of all visual regions; right:
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selectivity in the right PPA/RSC improved in step 2 (place selectivity = 1.28, t(172) = 16.9,

p< 0.00001, Cohen’s d = 1.43), but decreased to the original level in step 3 (place selectiv-

ity = 1.15, t(171) = 11.5, p< 0.00001, Cohen’s d = 0.88) (Fig 11G). Tool selectivity in the right

LOC improved in step 2 (tool selectivity = 1.28, t(170) = 15.85, p< 0.00001, Cohen’s d = 1.5),

but decreased in step 3, albeit to a level higher than the initial V1 step (tool selectivity = 1.16, t
(171) = 12.5, p< 0.00001, Cohen’s d = 1.23) (Fig 11H; left hemisphere and replication dataset:

S13 and S14 Tables). Interestingly, tool selectivity generated by step 2 was greater than the

actual tool selectivity exhibited by the LOC (Fig 11H, coral), suggesting that extended visual

system modulations to activity flow processes initially over-specified tool selectivity, and that

step 3 modeled the best-performing network interactions for mapping LOC tool selectivity.

Thus, for two complexes (EBA/FBA and PPA/RSC), one additional step of extended visual sys-

tem network interactions best specified category selectivity. For one complex (FFA/pSTS), the

V1 stimulus-driven (step 1) model was best, and for another complex (LOC) three steps were

best.

Therefore, even though mapped response profiles tended to improve when modeling bidi-

rectional and/or recurrent processes across the visual system, visual-system-mapped category

selectivities did not consistently improve beyond what was specified by stimulus-driven activ-

ity flows from V1. Additionally, given that all observations were most robust in the fully dis-

tributed model (Fig 1A) (including response profile accuracies, which explained a maximum

of 45% variance in the extended visual model, Fig 11D, and up to 92% in the whole-cortex

model, Fig 3D), the visual system is likely further modulated by other systems (e.g., DAN inter-

actions; also supported by Keane et al. [185]) to provide the full set of distributed activity flow

processes that stably generate localized category selective responses (as in Figs 5–8).

Adding fully distributed network interactions to stimulus-driven activity

flows further enhances category selectivity

Given evidence that stimulus-driven network interactions with V1 generated visual category

selectivity (Fig 10), but to a lesser extent than the fully distributed mappings (Figs 5–8), and

that this inconsistently improved when extended to later visual system interactions (Fig 11),

we next sought to extend the stimulus-driven model to fully distributed network interactions

(i.e., a “stimulus-driven + fully distributed” mapping) (Figs 1D and 12A). As in prior analyses,

fully distributed network interactions refer to activity flow processes over all cortical source

regions (Formula 1). Note that the stimulus-driven + fully distributed model differs from the

initial cortex-wide model (Fig 1A) by constraining inputs to V1 – reducing the chance for

causal circularity (e.g., from recurrent feedback to each functional complex) and excluding

possible temporally extended activity (in non-V1 regions) originating prior to stimulus onset

(e.g., attentional or task set top-down biases). First, using the extended mapping approach as

in Fig 11B, we initialized activity flow mapping with V1 network interactions, then incorpo-

rated all other network interactions in a second step (i.e., with regions beyond just VIS, see

Methods for full details). Across all functional complexes, we found that activity-flow-mapped

functional complexes studied herein). Across visual cortex, explained variance tended to increase with each step, indicating that the

extended visual system model was improving mapped response profiles across the cortex. This pattern was also observed across

functional complexes, with some exceptions, such as the PPA/RSC (which appears most accurate at step 2). (E-H) Actual (coral) and

visual-system-mapped (purple) category selectivity (see Methods) exhibited by the right EBA/FBA (E), FFA/pSTS (F), PPA/RSC (G),

and LOC (H). Mapped category selectivity is shown for each step in panel B. Activity-flow-mapped category selectivity estimates were

not consistently significant (see main text for statistics), suggesting that extending V1-initialized activity flow processes across the visual

system alone does not stably generate localized visual category selectivity. In panels E-F: significant t-statistics are indicated with an

asterisk (p<0.00001; see Methods); see Figs 5–8 for significance of actual category selectivity of functional complexes.

https://doi.org/10.1371/journal.pcbi.1012507.g011
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category selectivity was not only statistically significant but was also remarkably close to selec-

tivity generated by fully distributed network interactions (Figs 5–8), and in some cases exhib-

ited an improvement. Further, selectivity was significantly improved for all functional

complexes relative to the stimulus-driven V1-initiated model, demonstrating the importance

of additional brain-wide activity flows in increasing category selectivity beyond direct-from-

V1 activity flows.

Body selectivity in the EBA/FBA was statistically significant (mapped body selectivity = 1.41,

t(166) = 10.65, Cohen’s d = 0.83, p< 0.00001; Fig 12B). Here, activity-flow-mapped body

selectivity generated by stimulus-driven + fully distributed network interactions was an

improvement upon selectivity generated from V1 only (Fig 10) (related samples t-tests across

participants’ activity-flow-mapped body category selectivity scores: t(175) = 4.75, p = 4.18 x

10−6). Category selectivity in the FFA/pSTS (mean mapped mean face selectivity = 1.26, t(165)

Fig 12. Adding fully distributed network interactions to stimulus-driven activity flows further enhances category

selectivity. (A) A schematic of V1-initialized activity flow processes that are further propagated across all cortical network

interactions (as in Fig 1D). Here, fully distributed network interactions are initially established by activity flowing over the

connectivity fingerprints of each functional complex with V1. We used the multistep mapping procedure of Fig 11B (but

with only two steps), except for at the region level (Methods). (B) Mapped (purple) and actual (coral) body selectivity

exhibited by the right hemisphere EBA/FBA (gray dots: individual participants; boxplot line: median). Statistical significance

is reported in the main text. (C-E) Same as B, but: (C) face selectivity in FFA/pSTS, (D) place selectivity in PPA/RSC, and (E)

tool selectivity in LOC. Across all functional complexes, stimulus-driven + fully distributed mappings generated visual

category selectivity that was greater than the stimulus-driven alone model of Fig 10 and closely matched (and in some cases

improved upon) the fully distributed alone model of Figs 5–8. This suggests that activity flow processes initialized in V1, that

are further processed over all cortical network interactions, are capable of generating highly accurate visual category

selectivity, with reduced causal confounds (see main text for full rationale). Panels B-D: significant t-statistics are indicated

with an asterisk (p<0.00001; see Methods); see Figs 5–8 for significance of actual category selectivity of functional complexes.

https://doi.org/10.1371/journal.pcbi.1012507.g012
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= 8.44, Cohen’s d = 0.57, p< 0.0000; Fig 12C), the PPA/RSC (mapped place selectivity = 1.94, t
(166) = 14.54, Cohen’s d = 1.0, p< 0.00001; Fig 12D), and the LOC (mapped tool selectiv-

ity = 1.09, t(168) = 6.5, Cohen’s d = 0.58, p< 0.00001; Fig 12E) were all also significantly

improved from the stimulus-driven (V1 only) mappings (faces: t(175) = 3.41, p = 8.04 x 10−4;

places: t(175) = 8.41, p = 7.05 x 10−15; tools: t(175) = 2.16, p = 0.03).

Discussion

The foregoing results suggest that visual category selectivity in visual cortex is primarily gener-

ated by distributed activity flowing over intrinsic functional connections (Figs 5A–8A), even

when activity flows were restricted to stimulus-driven network interactions (i.e., excluding

top-down task set influences and/or influences from other category-responsive regions) (Fig

12). We observed significant visual category selectivity in four functional complexes for both

actual responses and responses mapped via fully distributed activity flow processes (Figs 1A

and 5C–8C). Further, distributed network interactions accounted for the majority of variance

in visual category selectivity (Figs 5D–8D). VIS2 interactions most prominently contributed to

both category-specific and response profile activations across complexes, with additional con-

tributions by other networks for select models: body-EBA/FBA activity from DAN; face-FFA/

pSTS from DAN and DMN; and place-PPA/RSC from DAN, VIS1, and DMN (Figs 5E and

5F–8E and 8F). Null network architectures revealed that each region’s unique intrinsic con-

nectivity fingerprint was a key component in enabling activity flow mapping to generate cate-

gory selectivity. Likewise, when source sets excluded regions otherwise known to be

responsive to visual categories, the fully-distributed activity flow processes remained capable

of generating category selectivity. Lastly, we found that V1-initialized network interactions

(Fig 1B–1D) were sufficient to generate category selectivity (Fig 10), with additional increases

in category selectivity from fully distributed network interactions (Figs 1D and 12). Altogether,

these findings support the hypothesis that distributed activity flow processes, specified by

intrinsic connectivity fingerprints of visual cortex regions, chiefly shape their category selective

responses.

These findings build upon prior observations of distributed and overlapping representa-

tions in the visual cortex [11], as well as the general hypothesis that connectivity fingerprints

determine a region’s functional repertoire [13,15]. Results here also extend observations that

structural connectivity fingerprints (of the same regions studied here) can be used to predict

visual category responses [21], as well as observations that responses to visual stimuli can be

predicted by the spatial topography of activity in other visual cortex regions [14]. Here we go

beyond these predictive results by modeling mechanistic processes – localized convergence of

activity flows over intrinsic connectivity fingerprints [27,28] – contributing to the generation

of localized activations [20]. We focused on visual regions here so we could leverage the long-

standing observations of category selectivity in visual cortex regions to test various network

interaction models, revealing how localized activations are (at least for the regions tested) pre-

dominantly generated by distributed activity flow processes shaped by intrinsic functional

connectivity fingerprints.

Importantly, fully distributed activity flow mappings (Figs 5–8) did not account for all task-

evoked activity variance, leaving room for within-region mechanisms to carry out critical com-

putations. Here we adopted a definition of local computation consistent with fMRI and

electroencephalography research: local activity reflects local field potentials, which are thought

to reflect inputs and within-region processing [186]. Therefore, it was not a guarantee that dis-

tributed processes would exhibit the predominant influence in this fMRI dataset. However, the

present study provides two major lines of evidence in support of this claim. Firstly, fully
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distributed activity flow processes mapped visual category responses with high accuracy in all

functional complexes. If within-region mechanisms strictly accounted for these responses we

would expect lower accuracy, given prior simulation-based findings demonstrating that suc-

cessful activity flow mapping requires high distributed processing (global coupling) and low

local processing (self-coupling) (Fig 2B [27,28]). Mapped category selectivity within the fully

distributed model (Fig 1A) is thus a proxy for the degree of distributed processes underlying

category selectivity. Secondly, the estimated contribution of distributed processes to category

selectivity was significantly greater than 50% for all functional complexes assessed. We addi-

tionally observed that activity flow processes explained the majority of variance in response

profiles (across 24 diverse task conditions) exhibited by each complex (Figs 5F–8F), suggesting

that activity flowing over global, intrinsic connectivity patterns is a general mechanism in the

emergence of fMRI responses. However, large-scale functional networks had differential influ-

ence depending on the cognitive domain and target complex. For example, LOC responses

exhibited a strong general influence from VIS2 interactions (Fig 8E and 8F); in contrast to

FFA/pSTS, which exhibited strong VIS2 influence in the face-specific model (Fig 6E) with

additional influence from DAN and DMN in the general response profile model (Fig 6F).

Given this, along with the well-known observation that visual inputs from the retina arrive

in cortex (by way of the lateral geniculate nucleus) in V1 [42,43], we adapted activity flow map-

ping to test refined hypotheses about the possible stimulus-driven network interactions that

generate visual category selectivity (Fig 1B–1D). We found evidence that when solely initial-

ized by V1 source regions, activity flow mappings generated significant (though less than the

fully distributed model) category selectivity (Figs 1B and 10). This demonstrated that category

selectivity is generated initially by activity flows directly from V1. Category selectivity inconsis-

tently improved when mappings were further shaped by visual system interactions (Figs 1C

and 11), but markedly (and consistently) improved when further shaped by fully distributed

cortical network interactions (Figs 1D and 12). These results suggest that fully distributed net-

work interactions that were initially established in V1 are sufficient to generate visual category

selectivity (without, e.g., local computations). This approach allowed for improved inferential

validity by largely ruling out a potential causal confound wherein the non-V1-initiated fully

distributed model (Fig 1A) interactions might receive information from the functional com-

plex itself through feedback. It is possible that an extended step of fully distributed interactions

outperformed extended steps of visual system interactions because of the influence of top-

down modulations thought to be critical for visual processing [169–171,173,174]. We encour-

age future work that systematically tests which non-visual-network interactions are most criti-

cal to further shaping stimulus-driven activity flow processes.

The present results support a framework of neurocognitive processing that emphasizes the

mechanistic influence of distributed network interactions, even in the extreme case of localized

visual category selectivity. This follows from our demonstrations that category selectivity in

functional complexes can be generated via an empirically-estimated distributed processing

model: task-evoked activity flowing over connectivity fingerprints. However, while our rest-

ing-state connectivity estimates address causal confounds better than standard FC measures

(Fig 3A), they lack directional information. For instance, if ongoing within-region process var-

iance strongly influenced downstream regions, then this distributed output activity would con-

tribute (in the incorrect causal direction) to the mapping of the localized processes. This

possibility is unlikely, however, since such strongly category selective output would likely drive

downstream regions to also exhibit robust category selectivity, and the best-established cate-

gory selective regions were included in each functional complex in our analyses, removing

them from prediction sources. We also conducted a control analysis that specifically excluded

other known visual-category-responsive regions from source sets, and results were remarkably
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consistent. In addition, we more systematically ruled out this possibility for circularity in the

stimulus-driven network interaction models (Fig 1B–1D, see Methods) by restricting all activ-

ity flows to those originating (directly or indirectly) from visual input region V1. Altogether,

our results largely rule out the alternative hypothesis that localized visual category selectivity is

solely driven by within-region computations. For instance, our results rule out the hypothesis

that elevated face-image-evoked activity in FFA solely reflects within-FFA computations to

detect or identify faces. Instead, the present results suggest elevated activity in FFA primarily

reflects connectivity-specified activity flows summing together weakly category-selective dis-

tributed responses to generate highly category-selective localized responses. It will be impor-

tant for future research to disentangle input and output processes to and from visual category

selective brain regions in order to further specify the time course and directionality of network

interactions that support visual category selectivity. One compelling approach that aligns with

the broad inferences made in the present study is connective field modeling [14], which pre-

dicts responses in visual cortex regions from activity patterns in other brain regions. This

approach does not implement functional and/or structural connectivity estimation standard to

neuroimaging, but instead a spatially-linked Gaussian model-fit procedure that future

researchers may integrate as part of the activity flow mapping to develop estimates of direction

of information flow. Additionally, following suggestions by Poldrack et al. [63] and the accessi-

bility of functional regions assessed in Osher et al. [21], we selected functional complexes of

interest a priori and uniformly across participants. However, we encourage future work to

probe individual differences in category-selective topography (as in face localizer tasks [187],

or with individualized network parcellations [188]). More broadly, in order to formalize a rig-

orous testbed for our hypotheses, we treated the end point of activity-flow-mapped visual cate-

gory selectivity as a localized response. However, future work that builds upon the present

study will likely make greater contact with neurobiological reality if dispersed representation

of visual categories across the cortex are probed.

Lastly, activity flow mapping can be considered an empirically-constrained (by incorporat-

ing empirical brain connectivity) complement to CNN models of visual category selectivity

[32]. In the present study, we mapped category-selective responses in select regions of visual

cortex via activity flows, quantifying the distributed brain network interaction patterns con-

ferred by functional connectivity-weighted activity patterns. This approach accounts for a

known [33] limitation of CNNs: an under-constrained correspondence with human brain

connectivity. CNNs are widely used in modeling visual processes by optimizing model weights

to visual discrimination tasks, with the advantage of more detailed modeling of visual image

parameters. However, this focus on visual image classification tasks results in models that are

under-constrained with respect to neurobiological network solutions that enable a given brain

response. Given that activity flow models and CNNs are complementary in their strengths and

weaknesses, we propose building upon the present study by incorporating both activity flow

mapping and CNNs into a single model. It would also be informative to systematically test

CNN network solutions against activity flow mapping solutions. One possible implementation

of this prospective approach would be to initiate activity flows directly from visual images and/

or image parameters, as in CNNs [32] and standard encoding models [31]. From here, a CNN

model of visual responses could theoretically be constrained by an activity flow-based network

solution, which would likely result in a model of computational mechanisms more closely

linked to neurobiological processes. While the modeling approach in the current study was ini-

tiated with average image-evoked brain responses (and in the case of the V1 models, initiated

at the cortical starting point after initial phototransduction and thalamic encoding), future

research may add essential detail to these inferences by modeling the parameters of images on

a more refined scale.
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In summary, we observed that distributed network interactions, specified by intrinsic con-

nectivity fingerprints, are likely the primary contributor to the emergence of category selectiv-

ity in visual cortex regions. This finding builds upon and integrates a history of theories in

vision neuroscience and network neuroscience emphasizing the importance of distributed and

overlapping activation patterns [11], connectivity fingerprints specifying regional functioning

[13,15], and models predicting visual responsiveness [14]. We leveraged activity flow map-

ping’s inherent sensitivity to global processing features [27] to estimate the contribution of dis-

tributed processes upon visual category selectivity. Looking forward, the present findings can

facilitate examinations of the generative capacity of distributed neural processing mechanisms

by constraining and contextualizing hypotheses.
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S1 Fig. Whole-cortex activity-flow-mapped activations for four semantic visual categories.
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Right: Cross-participant average activity-flow-mapped task activations to body categories pro-
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respectively. In all cases, accuracy was high, demonstrating that activity flow processes mapped

predicted cross-cortex responses to each visual category of interest well.
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S2 Fig. Benchmarking activity in four functional complexes. To corroborate findings in the

literature that each of the four functional complexes assessed in the present study exhibit sig-

nificantly higher activations to images in their respective visual categories, we conducted stan-

dard t-test contrasts (discovery dataset, right hemisphere results depicted here; left hemisphere

statistics reported in S1 Table). (A) Box and swarm plots depicting activations to images of

bodies and body parts exhibited by the EBA/FBA (dots = individual participant’s data). The

actual activity is shown in coral and the activity-flow-mapped activity is shown in purple. Body

versus non-body activations were contrasted with a one-tailed, paired samples t-test (hypothe-

sizing that body activity was larger than non-body activity in the EBA/FBA), with an asterisk

indicating a statistically significant difference (p< 0.0001 with nonparametric permutation

tests, as reported in the main text Results). The EBA/FBA exhibited statistically greater activa-

tions to body versus non-body images, benchmarking the prior work in the literature. (B)

Same as in A, but for face versus non-face images and the FFA/pSTS functional complex. (C)

Same as in A, but for place versus non-place images and the PPA/RSC functional complex. (D)

Same as in A, but for tool versus non-tool images and the LOC functional complex. All results

were corroborated by the replication dataset (N = 176 in each; statistics given in main Results

text).
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S1 Table. Whole-cortex activity-flow-mapped responses to visual category conditions.

Across select portions of cortex (whole cortex = all 360 MMP cortical regions [56]) and all

n = 176 participants, the accuracy of activity flow mapping was estimated by comparing of

mapped and actual responses to select HCP conditions (response profile = across all 24 HCP

conditions) via Pearson’s r, mean absolute error (MAE), and the coefficient of determination

(R2).
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S2 Table. Benchmark contrasts in four functional complexes. Number of permutations in

max-T nonparametric permutation testing: 10,000. Disc. = discovery; repl. = replication; hemi.

= hemisphere.
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S3 Table. Category selectivity scores and estimated percent distributed processing contri-

bution to category selectivity in four functional complexes. Number of permutations in

max-T nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods

for details on outlier removal procedure). Disc. = discovery; repl. = replication; thresh. =

threshold; hemi. = hemisphere.
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S4 Table. Large-scale functional network activity flows contributing to category-specific

responses in four functional complexes. Number of permutations in max-T nonparametric

permutation testing: 10,000. sig. = significant. VIS1 = primary visual network;

VIS2 = secondary visual network; DAN = dorsal attention network. These results corroborate

results presented in Figs 4E–7E (right hemisphere discovery data; statistics reported in main

text). Disc. = discovery; repl. = replication; thresh. = threshold; hemi. = hemisphere.
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S5 Table. Discovery dataset: variance explained per network in predicting cross-condition

response profiles in left hemisphere complexes. Source network = network-based source of

explained variance in activity-flow-mapped activations across 24 conditions (i.e., the response

profile). VIS1 = primary visual network; VIS2 = secondary visual network;

SMN = somatomotor network; CON = cingulo-opercular network; DAN = dorsal attention

network; LAN = language network; FPN = frontoparietal network; AUD = auditory network;

DMN = default mode network; PMM = posterior multimodal network; VMM = ventral multi-

modal network; OAN = orbito-affective network. rel. % = percent of relative importance to the

full model. Asterisks = statistically significant network contributions (p< 0.0001, number of

permutations = 10,000). EBA/FBA max-T(175) = 3.41; FFA/pSTS max-T(175) = 3.42; PPA/

RSC max-T(175) = 3.42; LOC max-T(175) = 3.39. Statistical results listed in the bottom two

rows refer to 1 sample t-testing of the total R2 value for each model versus 0.5, which assesses

whether the mapped response profile for a given functional complex explains more than 50%

of the variance in the actual response profile. This provides evidence that distributed processes

(as captured by activity flow mapping) are the dominant influence in generating a given func-

tional complexes activations to a diverse set of cognitive domains. n/a = not applicable. These

results corroborate results presented in Figs 4F–7F (right hemisphere discovery data; statistics

reported in main text).
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S6 Table. Replication dataset: variance explained per network in predicting cross-condi-

tion response profiles in left hemisphere complexes. Source network = network-based

source of explained variance in activity-flow-mapped activations across 24 conditions (i.e., the

response profile). VIS1 = primary visual network; VIS2 = secondary visual network;

SMN = somatomotor network; CON = cingulo-opercular network; DAN = dorsal attention

network; LAN = language network; FPN = frontoparietal network; AUD = auditory network;

DMN = default mode network; PMM = posterior multimodal network; VMM = ventral multi-

modal network; OAN = orbito-affective network. rel. % = percent of relative importance to the

full model. Asterisks = statistically significant network contributions (p< 0.0001, number of

permutations = 10,000). EBA/FBA max-T(175) = 3.34; FFA/pSTS max-T(175) = 3.4; PPA/RSC

max-T(175) = 3.35; LOC max-T(175) = 3.38. Statistical results listed in the bottom two rows
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refer to 1 sample t-testing of the total R2 value for each model versus 0.5, which assesses

whether the mapped response profile for a given functional complex explains more than 50%

of the variance in the actual response profile. This provides evidence that distributed processes

(as captured by activity flow mapping) are the dominant influence in generating a given func-

tional complexes activations to a diverse set of cognitive domains. n/a = not applicable. These

results corroborate results presented in Figs 4F–7F (right hemisphere discovery data; statistics

reported in main text).
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S7 Table. Replication dataset: variance explained per network in predicting cross-condi-

tion response profiles in right hemisphere complexes. Source network = network-based

source of explained variance in activity-flow-mapped activations across 24 conditions (i.e., the

response profile). VIS1 = primary visual network; VIS2 = secondary visual network;

SMN = somatomotor network; CON = cingulo-opercular network; DAN = dorsal attention

network; LAN = language network; FPN = frontoparietal network; AUD = auditory network;

DMN = default mode network; PMM = posterior multimodal network; VMM = ventral multi-

modal network; OAN = orbito-affective network. rel. % = percent of relative importance to the

full model. Asterisks = statistically significant network contributions (p< 0.0001, number of

permutations = 10,000). EBA/FBA max-T(175) = 3.41; FFA/pSTS max-T(175) = 3.39; PPA/

RSC max-T(175) = 3.42; LOC max-T(175) = 3.38. Statistical results listed in the bottom two

rows refer to 1 sample t-testing of the total R2 value for each model versus 0.5, which assesses

whether the mapped response profile for a given functional complex explains more than 50%

of the variance in the actual response profile. This provides evidence that distributed processes

(as captured by activity flow mapping) are the dominant influence in generating a given func-

tional complexes activations to a diverse set of cognitive domains. n/a = not applicable. These

results corroborate results presented in Figs 4F–7F (right hemisphere discovery data; statistics

reported in main text).
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S8 Table. Null connectivity fingerprint models, right hemisphere functional complexes

and replication dataset. In each analysis, the true model category selectivity scores (i.e., activ-

ity-flow-mapped with true connectivity fingerprint) were compared to the null model category

selectivity scores (i.e., activity-flow-mapped with substituted connectivity fingerprints) across

participants (paired samples t-test). Repl. = replication.

(DOCX)

S9 Table. Null connectivity fingerprint models, left hemisphere functional complexes. In

each analysis, the true model category selectivity scores (i.e., activity-flow-mapped with true

connectivity fingerprint) were compared to the null model body selectivity scores (i.e., activ-

ity-flow-mapped with substituted connectivity fingerprints) across participants (paired sam-

ples t-test). Disc. = discovery; repl. = replication.

(DOCX)

S10 Table. Category selectivity generated from stimulus-driven activity flow processes for

left hemisphere functional complexes and the replication dataset. Number of permutations

in max-T nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods

for details on outlier removal procedure). This analysis corresponds to category selectivity gen-

erated from V1-initialized, stimulus-driven activity flow processes (Figs 1B and 9; Step 1 of Fig

11B). Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. = threshold; n.s. = not

significant.

(DOCX)
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S11 Table. Actual category selectivity exhibited by V1 for the replication dataset. As in the

main text (reporting the discovery dataset results), bilateral V1 (vertex-level data, see Methods)

itself did not exhibit significant category selectivity for any of the four visual categories. Given

this observation, it is likely that intrinsic connectivity patterns (between V1 and functional

complexes of interest), and not source activation patterns in V1, were key to stimulus-driven

activity flow processes being able to generate visual category selectivity.

(DOCX)

S12 Table. Stimulus-driven category selectivity generated via activity flow mapping is sig-

nificantly greater than with a null network architecture. In each analysis, the true model cat-

egory selectivity scores (i.e., via stimulus-driven activity flow mapping with true connectivity

fingerprint with V1) were compared to the null model (Fig 10C) category selectivity scores

(i.e., activity flow mapping with randomly shuffled connectivity fingerprints, see Methods)

across participants (paired samples t-test). N.s. = not significant.

(DOCX)

S13 Table. Category selectivity via stimulus-driven processes further shaped by VIS sub-

system network interactions (step 2), left hemisphere functional complexes and the repli-

cation dataset. Number of permutations in max-T nonparametric permutation testing:

100,000. d.f. = degrees of freedom (see Methods for details on outlier removal procedure). This

analysis corresponds to category selectivity generated from V1-initialized, stimulus-driven

activity flow processes that are further shaped by one step of VIS subsystem network interac-

tions (Figs 1C and 11). Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. =

threshold; n.s. = not significant.

(DOCX)

S14 Table. Category selectivity via stimulus-driven processes further shaped by VIS sub-

system network interactions (step 3), left hemisphere functional complexes and the repli-

cation dataset. Number of permutations in max-T nonparametric permutation testing:

100,000. d.f. = degrees of freedom (see Methods for details on outlier removal procedure). This

analysis corresponds to category selectivity generated from V1-initialized, stimulus-driven

activity flow processes that are further shaped by two steps of VIS subsystem network interac-

tions (Figs 1C and 11). Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. =

threshold; n.s. = not significant.

(DOCX)

S15 Table. Category selectivity via stimulus-driven activity flow processes further shaped

by whole-cortex, fully distributed network interactions. Number of permutations in max-T

nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods for details

on outlier removal procedure). This analysis corresponds to category selectivity generated

from V1-initialized, stimulus-driven activity flow processes that are further shaped by fully dis-

tributed network interactions (Figs 1D and 12). Disc. = discovery; repl. = replication; hemi. =

hemisphere; thresh. = threshold.

(DOCX)
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