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Introduction to activity flow modeling
Activity flow is defined as the movement of activity between neural populations

(Cole et al., 2016). The concept of brain activity flow is everywhere and nowhere

in the neuroscience literature. It is everywhere in the sense that the standard model

of neural transmission—wherein action potentials flow along axons to influence

downstream neurons via neurotransmitter release impacting their dendrites—

involves the flow of “activity” (electrochemical signals). Yet, activity flow is

nowhere in neuroscience in the sense that neuroscientific inferences are normally

made using either activity patterns or connectivity. Seven years of studies focusing

on combining activity patterns and connectivity (typically using functional/effective

connectivity (FC)) to build activity flow models—simulations of the generation of

neurocognitive functions via activity flow processes—has demonstrated the broad

utility of this approach above and beyond standard activity or connectivity

approaches alone.Modeling integration between task-evoked activity and connectiv-

ity to make strong inferences about brain function will likely be essential for

developing rich causal explanations of the neural basis of cognitive functions, for

the purpose of fundamental understanding and developing treatments for brain

disorders.

To better illustrate the relevance of the activity flow modeling approach, let us

consider a hypothetical scenario wherein an alien technology lands on Earth: the

optimal brain imager (OBI). After some fiddling, human scientists discover that

the OBI noninvasively reads out every aspect of the entire human brain at the atomic

level (including electromagnetic fields) at microsecond resolution. Immediately, full

brain scans of human brain anatomy and human brains performing all manner of

tasks are collected, and the data are rapidly analyzed by the accompanying alien

computer (capable of handling the massive datasets produced by the OBI). These

analyses map the human connectome at full molecular resolution, along with

cellular-level whole brain maps of neural activity patterns accompanying every
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stimulus and task variable. Neuroscientists predict that all of the mysteries of the

brain will soon be solved. Certainly, some mysteries are rapidly solved, and neuro-

scientists rejoice.

However, it eventually becomes clear that the data and analyses derived from the

OBI present a major barrier to fundamental understanding of how brain activity

generates cognition and behavior. Specifically, even after full mapping of brain con-

nectivity and function-related brain activity, it remains unclear how these “parts”

work together to generate neurocognitive functions. Such generative understanding
of function is akin to understanding how the parts of a car work together (causally

interact) to generate the emergent properties of rapid and controlled movement (Ito

et al., 2020). For example, understanding how pressing a car’s accelerator generates

movement requires knowledge of the causal relationships between the system’s com-

ponents (e.g., the pedal, the transmission, the engine, and the wheels). Without such

an understanding, cars would appear to be mysterious to us, with the practical prob-

lem that no one would be able to fix a car if it were to break down. This is largely the

situation with the human brain—many of its functions remain mysterious to us, and

we have only a very limited ability to fix it when brain disorders arise.

Activity flow modeling is one possible solution to the problem of generative

understanding. Rather than treating mapping of brain connectivity and brain activity

patterns as goals in and of themselves, these become starting points in the quest for

generative understanding of brain function. Indeed, activity flow models are directly

built on the combination of brain connectivity and brain activity patterns: First,

empirical connectivity between all nodes (neural populations) of interest are identi-

fied, followed by input of empirical task-evoked activity into those nodes. A subset

of nodes are “held-out”—meaning their empirical task-evoked activities are not used

as input—such that the activity of those nodes can instead be generated by the model.

The basic generative process is the same as most neural network simulations: a

node’s activity is determined by the connectivity-weighted sum of the activity inputs

into that node (Fig. 1A). Model accuracy is assessed by comparing the generated

task-evoked activity with the empirical task-evoked activity (Fig. 1B). To the extent

that the generated task-evoked activity is accurate for a given neural population, the

contributing activity, connectivity, and activity flow (i.e., activity-connectivity inter-

action) processes can be analyzed to infer details of the generative processes driving

task-evoked activity in that neural population.

Going back to the hypothetical OBI, systematic application of activity flow

modeling to test generative hypotheses could be an effective strategy for achieving

a generative understanding of brain function. For example, generative understanding

of how an individual is able to read aloud could involve OBI-based recording of their

brain activity during vocalized reading of a long passage of text. This individual’s

detailed connectome would be used in a network simulation, with activity recorded

from the individual’s primary auditory cortex during verbal instructions (to read

the text) input into the model. The model would then simulate the resulting activity

flows moving throughout the brain as the individual prepares for the reading task.

The text stimuli would then be input into the simulation via visual activity input

(e.g., empirical activity patterns from primary visual cortex during stimulus
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FIG. 1

Overview of activity flow modeling in terms of theoretical origin, methodology, and practical

steps for model building. (A) Theoretical origin of activity flow modeling. The same

propagation and activation rules used in connectionist artificial neural networks are used in

activity flowmodels, but the parameters are set from empirical data. (B) Basicmethodological

schematic for activity flowmodeling. The standard activity flowmapping approach (Cole et al.,

2016) involves generating task-evoked activity in each region one-at-a-time based on activity

in all other regions and the connectivity with the to-be-generated region. The connectivity with

the target region, along with the equation (transfer function) at the bottom of the panel,

constitutes that target region’s activity flow model. (C) An example activity flow model based

on Ito et al. (2022), going from sensory inputs and task rule representations to motor outputs

in a context-dependent decision-making task. This example goes beyond the one-at-a-time

activity flow mapping approach in panel (B), linking sensory inputs to cognitive

transformations and behavior (motor responses). (D) How to build an activity flow model.

Most activity flow models use standard multiple regression to estimate functional/effective

connectivity (FC) (model weights) between brain regions. Resting-state brain data are

typically used to estimate functional connections, though task data can also be used. These

FC patterns are then used (along with the previous layers’ task-evoked activity) to generate

task-evoked activity in the next layer in the multistep activity flow procedure.
(A) Adapted from McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic

cognition. Nat. Rev. Neurosci. 4 (4), 310–22. (B) Adapted from Cole, M.W., Ito, T., Bassett, D.S., Schultz, D.H.,

2016. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. https://doi.org/

10.1038/nn.4406. (C and D) Adapted from Ito, T., Robert Yang, G., Laurent, P., Schultz, D.H., Cole, M.W.,

2022. Constructing neural network models from brain data reveals representational transformations linked to

adaptive behavior. Nat. Commun. 13 (673). https://doi.org/10.1038/s41467-022-28323-7.

https://doi.org/10.1038/nn.4406
https://doi.org/10.1038/nn.4406
https://doi.org/10.1038/s41467-022-28323-7


presentation), with the resulting activity flows throughout the brain mixing with the

activity previously initiated during instructions. To the extent that activity patterns

following the initial inputs are accurately generated—especially the motor activity

patterns directly driving the behavior of interest (reading aloud)—the various sim-

ulated activity flows driving those processes can be analyzed for insights into the

generation of reading aloud behavior. Furthermore, changes to those activity flows

can be made within the model to better understand their impact, resulting in yet dee-

per understanding of the generative processes involved. Ultimately, activity flow

modeling would go beyond the comprehensive neural activity and connectivity

information obtained by the OBI to provide insights into how activity and connec-

tivity interact to produce cognition and behavior.

Core principles of activity flow modeling
There are four principles that are central to activity flowmodeling (Table 1). The first

of these principles was described in the previous section: generativity, wherein func-
tions of interest (e.g., face selectivity in the fusiform face area, or behavioral

responses via primary motor cortex) are produced in the act of modeling brain func-

tion. Generating the function of interest allows quantification of the success of the

proposed mechanism for producing that function (Ito et al., 2020). Thus, generativity

is key to the utility of activity flow modeling in providing evidence regarding the

likely brain processes underlying functions of interest. This contrasts with most data

analysis approaches (such as estimating connectivity or classifying task-evoked acti-

vation patterns), which are descriptive rather than generative.

Table 1 Core principles underlying activity flow modeling.

Activity flow
modeling principle Description

Generative Use activity and connectivity to generate held-out
(independent) activity in one or more neural population,
allowing assessment of the causal sufficiency of the used
activity and connectivity features in generating functions of
interest

Simplicity/abstraction Increase interpretability and identification of essential model
features through model simplicity and abstraction
(e.g., focusing on activity of entire brain regions rather than
within-region activity patterns), increasing complexity only
as necessary based on empirical evidence and the to-be-
generated function(s) for a given study

Mechanistic/causal Add accurate causal constraints (e.g., to connectivity
estimates) whenever possible to increase the likelihood
that modeled processes match the causal mechanisms
used in the brain

Empirically constrained
(data-driven)

Model features should be directly estimated by empirical brain
data when possible, grounding the model in reality and
reducing the number of modeling assumptions
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Generativity follows from the central equation in activity flow modeling, which

is also used in most artificial neural networks: ah¼ f(Σaiwhi), where ah is the to-be-
generated neural population’s activity, whi is the connectivity to region ah, and f is a
transfer function, such as a sigmoid, linear, or rectified linear (threshold) transforma-

tion (Fig. 1A). Thus, activity flow modeling can be considered an approach to gen-

erate empirically estimated neural network simulations, aiding interpretation of

neural data by testing its ability to generate neural data in independent/held-out neu-

ral populations (Ito et al., 2020).

Another core principle in the development of activity flow models has been sim-
plicity/abstraction—keeping the models as simple as possible until there is an

explicit need to make them more complex (Table 1). This includes the concept of

abstraction, wherein features at lower levels of organization are aggregated over

in the interest of explanatory simplicity. For example, we abstract over the quantum

and atomic scale when describing the behavior of individual neurons, and so it may

be that the most effective generative explanations of neurocognitive functions are at

yet larger scales (Saxena and Cunningham, 2019). While simplicity and abstraction

typically result in activity flow models lacking many details included in more bio-

physically detailed models, this simplicity principle has several important advan-

tages. First, simplicity reduces the chance of the models containing a large

number of unjustified assumptions that turn out to be incorrect. Instead, we start

out simple with new assumptions treated as hypotheses to be supported by data

and/or simulations. Second, simplicity can reduce overfitting of model features to

particular problems, tasks, or data types, increasing the generality of findings (Li

and Spratling, 2023; Hansen, 2020). Third, simplicity is obtained in part by using

the methods that most researchers are actively using (e.g., using general linear

models (GLMs) for fMRI activity estimates and Pearson correlation for fMRI con-

nectivity estimates), making activity flow modeling results easier for most

researchers to understand, as well as maximally relating results to previous studies.

Thus, simplicity has been advantageous for activity flow models, even as they

become more complex (and thus able to account for more phenomena) with

each study.

To briefly illustrate this simple-to-complex transition, let us start with the original

activity flow modeling study (Cole et al., 2016), which used standard Pearson-

correlation FC and GLMs to maximally relate to the existing fMRI literature. That

same study then demonstrated (in both simulations and empirical fMRI data) the

increased causal validity and generative performance of using multiple regression

as an FC measure. Thus, results were maximally applicable to the existing literature,

while advancing the literature using a more complex and causally principled FC

approach (multiple-regression FC). This simple-to-complex trajectory has led most

recently to a multistep activity flow approach (Ito et al., 2022) (Fig. 1C and D), using

multiple-regression FC across “layers” (sets of brain regions) from (1) visual and

auditory inputs to (2) intermediate “conjunction regions” implementing cognitive

information transformations to (3) motor outputs in primary motor cortex. These

model-generated motor activations are then decoded (based on a decoding model
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trained using empirical motor activations), such that the model generates task-

performing behavior. I will be unpacking the details of these models next, but I

briefly described them here to illustrate the scale of the simple-to-complex transition

so far (across 17 studies published between 2016 and 2023).

Another core principle of activity flowmodeling is to focus onmechanistic expla-
nations, by way of identifying causal constraints whenever possible (Table 1). The

importance of this principle derives from the observation that an explanation pro-

vides less generative understanding if the generating/predicting process is unrelated

to causal mechanisms within the system of interest. For example, pure (nonmecha-

nistic) prediction of a motor response from a statistical model (e.g., based on the

previous history of motor responses) rather than one grounded in causality would

provide less insight into the processes generating that motor response than alternate

predictions based on causally grounded generative processes.

The mechanistic principle is perhaps the most challenging principle to enact,

given the difficulty of causal inference in general and in the context of brain inter-

actions in particular (Reid et al., 2019; Mill et al., 2017a,b). The challenges of causal

inferences are numerous and complex (see Pearl, 2009), but an example is confound-

ing. To illustrate, consider that pain killer use (such as acetaminophen) is strongly

correlated with mortality (Lipworth et al., 2003). This may lead one to avoid pain

killer use, yet this is a noncausal relationship due to confounding. Specifically, many

diseases (e.g., cancer) cause pain (and so pain killer use), as well as mortality. This

scenario can be represented as a simple causal graph (A C!B), with C being

disease, A being pain killer use, and B being mortality. Critically, a causal inference

method (e.g., simple correlation) that does not take into account confounding would

suggest the wrong conclusion that pain killer use causes death. The same basic prob-

lem arises frequently in neuroscience (Reid et al., 2019).

Despite these challenges, causal/mechanistic explanation is a core principle as

causality is central to scientific understanding and application of that understanding,

such as causal interventions (i.e., treatments) to cure brain diseases. As an example of

this principle in action, consider the use of multiple-regression FC in the original

activity flow modeling study (Cole et al., 2016), which was based on the improved

causal inferences possible using multiple-regression FC (due to accounting for

causal confounds and causal chains) relative to the more standard Pearson-

correlation FC approach (Fig. 2A and B). Furthermore, subsequent progress was

made, however, with a recent study, demonstrating that multiple-regression FC

(and partial-correlation FC) is less accurate in capturing ground truth FC than

Pearson-correlation FC in the case of causal colliders (Fig. 2C) (Sanchez-Romero

and Cole, 2021). That same study demonstrated a method—termed combi-

nedFC—that combines the advantages of both multiple-regression FC (or partial-

correlation FC) and Pearson-correlation FC, increasing the causal validity of FC

beyond either method alone. Furthermore, that study used empirical fMRI data to

find massive reductions in the number of estimated connections with partial-

correlation FC relative to regular Pearson-correlation FC, suggesting confounders

and chains (affecting correlation FC) are a much bigger problem in practice than col-

liders (affecting multiple regression/partial correlation). Accordingly, if a method
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like combinedFC (or the Peter-Clark algorithm (Sanchez-Romero et al., 2023)) is not

used then multiple-regression FC (or partial-correlation FC) is preferable to Pearson-

correlation FC.

Also building on the mechanistic/causal principle, a recent expansion of activity

flowmodeling to source-localized high-density electroencephalography (EEG) data-

sets (Mill et al., 2022b) improves causal inferences of activity flow modeling further

by taking into account the temporal order of causal events (Fig. 3). These approaches

have also been combined with simulated lesions and other innovations to improve
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FIG. 2

Relationship between underlying causal mechanisms and common FC measures. Three

common causal graph motifs are shown to illustrate fundamental principles of relating causal

mechanisms to FC measures. CombinedFC (Sanchez-Romero and Cole, 2021) is an FC

method that combines the best of both bivariate Pearson correlation and partial-correlation/

multiple-regression FC. Other methods that achieve similar (and sometimes better) results

also exist (Sanchez-Romero et al., 2023). (A) A causal confounder (also termed a fork) is

when a neural population causes activity in two or more others, causing correlations in the

downstream populations’ time series. This can lead to spurious associations/causal

inferences. Common FC measures, such as Pearson correlation and coherence, are

susceptible to false positives from confounders (Reid et al., 2019). (B) A causal chain is when

a neural population influences another via a third neural population. Not accounting for the

third neural population (i.e., a mediator) can lead to false positive connections (though

these could be considered “indirect” connections). (C) A causal collider occurs when two or

more neural populations influence another neural population. In this case common

methods such as Pearson correlation or coherence make proper inferences, but methods

that control for confounding (e.g., partial correlation) create false connections. Note that, at

least with fMRI data, it was found that the confounding problem (panel A) was much

more problematic in the human brain than the collider problem, though both are present

(Sanchez-Romero and Cole, 2021).
Figure adapted from Sanchez-Romero, R., Cole, M.W., 2021. Combining multiple functional connectivity

methods to improve causal inferences. J. Cogn. Neurosci. 33 (2), 180–94.
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Improving causal mechanistic inferences via extension of activity flow modeling/mapping to high-

temporal-resolution neural recordings (here EEG). Approach and results from Mill et al. (2022b).

(A) High-density EEG data in human participants were used along with individual-subject structural

MRI to implement region-level source localization. (B) The dynamic activity flow mapping

framework. Instead of just generating activity in spatially held-out regions, this approach also

generates temporally held-out (i.e., future) activity. This improves the causal inference given the

centrality of the direction of time in causal interactions. (C) The decodedmotor response information

time course based on generated cortical motor network activity (blue) from an activity flow model

(including all nonmotor regions) during a simple sensory-motor mapping task. The decoded motor

response information time course from the actual cortical motor network activity (pink) is shown for

comparison.
Figure adapted from Mill, R., Flinker, A., Cole, M.W., 2022a. Invasive human neural recording links resting-state

connectivity to generation of task activity; Mill, R.D., Hamilton, J.L., Winfield, E.C., Lalta, N., Chen, R.H., Cole, M.W.,

2022b. Network modeling of dynamic brain interactions predicts emergence of neural information that supports human

cognitive behavior. PLoS Biol. 20 (8), e3001686.



causal inferences once activity flow models are built (Hearne et al., 2021; Mill et al.,

2022b; Ito et al., 2022). Despite these advances in FC methodology and the conse-

quent improvement in mechanistic inferences with activity flowmodeling, numerous

opportunities to increase the causal validity of activity flow models remain.

Finally, perhaps the most fundamental principle in activity flow modeling is the

centrality of empirical constraints (Table 1). Indeed, activity flow modeling begins

and ends with empirical data, such that it can be considered both a data analysis and

computational modeling framework. The approach begins with empirical data in the

sense that model features—connections and input activity—are directly estimated

from empirical brain data. The approach ends with empirical data in the sense that

the model-generated activity is compared to actual empirical brain activity to test the

validity of the model for generating the brain function(s) of interest. For example, a

recent study (Cocuzza et al., 2022) used a causal FC approach (combinedFC; see

Fig. 2) with fMRI to estimate the empirical connectivity between brain regions in

the visual system, then used those empirical connections along with empirical acti-

vations in V1 as input into the model. This model was then tested for its ability to

generate well-known category-selectivity activity in higher-level visual regions,

such as face selectivity in the fusiform face area (Fig. 4). The success of the model

in generating such category-selective activity demonstrated the sufficiency of fMRI

connectivity and activity—when combined in an activity flow model—for providing

an (important but partial) explanation of how category-selective visual brain activity

is generated via brain network interactions.

A) B)

FIG. 4

Activity flow modeling of visual processing generates canonical visual category selectivity via

distributed processes. Approach and results from Cocuzza et al. (2022). (A) A multistep

activity flow model was used, with the only empirical task-evoked activations coming from V1

activity patterns. All other task-evoked activations were generated via activity flow over

resting-state FC (with combinedFC). Three activity flow steps were simulated to generate task-

evoked activity in visual-category-selective region sets (panel B). (B) Generated and actual

category selectivity for an example visual-category-selective region set (fusiform face

complex: fusiform face area+other face-selective regions) are plotted. Statistical significance

>1 (no category selectivity) for each set of generated activations are shown (blue text).
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Certainly, there are many details left out of such a model, yet the reliance on

empirical data grounds the model such that there is a clear path toward adding those

details (e.g., fine-grained temporal dynamics) in future work. As a counterexample to

illustrate the utility of the empirical constraint principle of activity flow modeling,

consider the immense flexibility of modeling category-selectivity visual responses

without such a constraint. As discussed further next, there are an enormous number

of ways to generate a category-selective pattern from exemplars (e.g., any of a vari-

ety of machine learning models or artificial neural networks (Cybenko, 1989)), such

that we could spend decades demonstrating this variety of possibilities without nar-

rowing down to a small set of empirically plausible options. The empirical constraint

principle can help more rapidly narrow down the possibilities, reducing the scientific

search space to those options consistent with both empirical connectivity and empir-

ical activity patterns. Ideally, all relevant empirical constraints (e.g., the activity and

connectivity of every neuron in the human brain) would be available to inform activ-

ity flow model-based explanations, but the work so far has demonstrated that we can

still make tremendous progress without every relevant constraint. Indeed, the sim-

plicity principle pushes against such a complex model, such that even if we had

access to every neural event in the brain we would want to use simulated lesioning

(Ito et al., 2022; Mill et al., 2022b) or related dimensionality reduction methods to

simplify the model and identify the core set of activity flows underlying functions of

interest.

Examples of successful activity flow models
We originally developed activity flow modeling to make two specific kinds of infer-

ence regarding neurocognitive phenomena (Cole et al., 2016). First, we wanted to

determine where the human brain is on the continuum from primary localized

(within-region) versus primarily distributed (inter-region) processing across a wide

variety of tasks. Simulations were used to validate this inference—activity flowmap-

ping only worked to the extent that underlying processes were distributed. The find-

ing that activity flow mapping also performed well with empirical fMRI data

suggested that the human brain’s task-evoked activations are mostly determined

by highly distributed processes. The second inference was to determine the func-

tional relevance of resting-state FC to task-related processing. Prior studies had

already shown a statistical link between resting-state FC and task-evoked activations

(Smith et al., 2009), yet activity flow mapping attributed this to a common cause—

that the activity flow pathways detected by resting-state FC were also those involved

in generating task-evoked activations. Furthermore, we developed an FCmethod that

used multiple regression to control for (observed) causal confounds, likely resulting

in a more causally valid FC method relative to field-standard Pearson-correlation FC

(see Sanchez-Romero and Cole, 2021). These (types 1 and 6) and other categories of

activity-flow-based explanations are listed in Table 2, with the explanation types

linked to individual studies in Table 3.
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Table 2 Major forms of activity-flow-based explanations of neurocognitive
phenomena (so far).

Type What is being explained? What is explanation based on?

1 Task-evoked activations Distributed processes (activity flows)

2 Task-evoked activations Specific connections and/or (other) activations

3 Dysfunctions/differences
(in activations)

Specific connections and/or activations

4 Behavior (via motor
activations)

Specific connections and/or activations

5 Task-related information
(MVPA)

Specific connections and/or activations

6 Functional relevance of
connection/activation

Contribution of connection/activation to another
activation/dysfunction/behavior

Table 3 List of studies that use activity flow modeling, what kinds of
explanation they include, what kind of connectivity they use, and what kind of
activity they use.

Study
Explanation
type

Imaging
method

Connectivity
type Activity type

Cole et al.
(2016)

1,6 fMRI RSFC with
correlation,
Multreg, PCR

7 diverse tasks, whole
cortex; simulations

Ito et al.
(2017)

5 fMRI RSFC with PCR 12 task rules, whole
cortex; simulations

Mill et al.
(2020)

3,6 fMRI RSFC with PCR Aging-related
dysfunctional task-
evoked activations

Ito et al.
(2020)

1 fMRI RSFC with
Multreg

Activity in transmodal
(vs sensory-motor)
cortex is better
predicted by
distributed processes

Cole et al.
(2021)

2,6 fMRI Task-state FC
with correlation,
Multreg, PCR

24 diverse task
conditions, whole
cortex

Keane et al.
(2021)

2 fMRI RSFC with
Multreg

Visual shape
completion task
activations

Hearne
et al. (2021)

3, 2 fMRI Cross-task
average FC with
Multreg

Working-memory-
related activation
dysfunction in
schizophrenia

Continued
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Table 3 List of studies that use activity flow modeling, what kinds of
explanation they include, what kind of connectivity they use, and what kind of
activity they use—cont’d

Study
Explanation
type

Imaging
method

Connectivity
type Activity type

Yan et al.
(2021)

6 DWI,
fMRI

DWI structural
connectivity

2 tasks, whole cortex

Schultz
et al. (2022)

1,2,5 fMRI RSFC with
correlation

12 task rules, multiple
demand regions

McCormick
et al. (2022)

6 fMRI Latent FC (rest &
task) with
correlation

24 diverse task
conditions, whole
cortex

Ito et al.
(2022)

4,2,6 fMRI RSFC with
Multreg

64 context-dependent
tasks, from sensory
& rule activations to
motor responses
(in M1)

Mill et al.
(2022b)

4,2,5,6 EEG RSFC with
MVAR and PCR

Decoded motor
information from
source-localized motor
cortex EEG activity

Hwang et al.
(2022)

2,3 fMRI RSFC with
correlation

100+ task conditions,
thalamus as source
and cortex as target

Zhu et al.
(2023)

6 fMRI Probabilistic
correlation RSFC

7 diverse tasks, whole
cortex

Keane et al.
(2023)

3,6 fMRI RSFC with
Multreg

Dysfunctional visual
shape completion task
activation in
schizophrenia

Sanchez-
Romero
et al. (2023)

6,2 fMRI RSFC with
correlation,
Multreg,
combinedFC,
and PC
algorithm

24 task conditions,
whole cortex; prefrontal
working memory
activation; simulations

Cocuzza
et al. (2022)

1,2 fMRI RSFC with
combinedFC

4 visual category
activations, visual-
category-selective
regions

DWI¼diffusion weighted imaging; EEG¼electroencephalography; RSFC¼ resting-state functional
connectivity; Multreg¼multiple regression; PCR¼principal components regression;
MVAR¼multivariate autoregression (related to Granger causality); PC algorithm¼Peter-Clark algorithm;
CombinedFC¼combined functional connectivity.
From Sanchez-Romero, R., Cole, M.W., 2021. Combining multiple functional connectivity methods to
improve causal inferences. J. Cogn. Neurosci. 33 (2), 180–94.
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Explanation type 2 (Table 2) is a more targeted inference, wherein a specific con-

nection or activation (or a set of connections or activations) helps explain the gen-

eration of a task-evoked activation. For example, Hearne et al. (2021) calculated

individual activity flow estimates—the [activations * connectivity] values (prior

to summing to produce the target activation). These values were then used to infer

the source activations and connections that drove working-memory-related activa-

tions. Furthermore, this approach was extended to group differences (explanation

type 3), to identify the likely sources of dysfunctional working memory activations

in schizophrenia patients. Other explanation type 2 efforts have involved simulated

lesions (Mill et al., 2022b) or network subset analyses (Keane et al., 2023) to isolate

the sources of task-evoked activations of interest. This approach has also been

extended to characterize the flow of task-related information via multivariate pattern

analysis (explanation type 5), revealing specific information flows between brain

regions (Ito et al., 2017) and the role of resting-state FC in determining the multi-

functionality of cognitive control regions (Schultz et al., 2022).

Behavior holds a privileged place in the demonstration of neurocognitive func-

tionality (Krakauer et al., 2017). We have therefore sought ways to link activity flow

processes to behavior (explanation type 4). Based on our mechanistic/causal princi-

ple (Table 1), we determined that proper modeling of behavior would involve iden-

tifying the activity flows that generate motor responses via primary motor cortex. In

Ito et al. (2022), this involved linking sensory inputs (visual and auditory) to task-

rule-related activations via resting-state FC, ultimately resulting in generated activa-

tions in primary motor cortex (M1) (Fig. 1C). These M1 activations were then

decoded to identify which button would have been pressed given each M1 activation

pattern. This resulted in above-chance performance of a complex context-dependent

cognitive task. The activity flow model that generated this behavior could then be

analyzed for insights into the likely mechanisms that led to this nontrivial cognitive

task performance. Motor behavior generation was also the goal in Mill et al. (2022b)

(Fig. 2C), with the advantage of high temporal resolution to improve the direction-

ality of causal inferences (via generating future brain activity).

Assumptions of activity flow models
The core assumption of activity flowmodeling is that activity flows—the movement/

propagation of activity between neural populations—support neurocognitive compu-

tation. This assumption has so far not been problematic, however, given that the

activity flow framework builds in a way to test this assumption via prediction of (typ-

ically already available) empirical activations. As emphasized in the previous discus-

sion of explanation type 1 previous (Table 2), this contrasts with the alternative

possibility that processes within neural populations (recurrent processes) are essen-

tial for neurocognitive computation (and cannot be accounted for with simple shifts

in connectivity weights or blurring of time). Note that the recently developed high-

temporal-resolution version of activity flow mapping can incorporate local recurrent
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processing, as well as cross-region activity flows (Mill et al., 2022b), potentially

allowing direct comparisons between distributed and local processes.

From a graph theoretical perspective, activity flow mapping has so far assumed

that activity propagates in the brain via a flow-based or diffusion-based routing pro-

tocol (Avena-Koenigsberger et al., 2017). Flow-based routing involves each signal

(here task-evoked activations) propagating along all available direct connections

rather than (for example) the most efficient/shortest path to a target node. This graph

theoretical characterization suggests that—relative to shortest paths—activity flow

models have assumed brain network communication optimizes for high parallel pro-

cessing and low information costs (connectivity weights alone determine routing

rather than a central router), but with high metabolic costs (since unnecessary nodes

are activated). Note that these high metabolic costs may be offset by the sparsity of

activations (due to local inhibition) (Rozell et al., 2008) and sparse connectivity

(Sacramento et al., 2015). It will be important for future work to test this assumption

in activity flow models, while also testing the optimization trade-offs predicted by

graph theory.

When using FC, activity flow models assume that observed correlations (or other

statistical associations) between neural populations are driven by similar activity

flows as occur between task-evoked activations. For example, with resting-state

FC, this assumes that spontaneous activity flows at rest use the same (or similar)

pathways as task-evoked activity flows. For task-state FC (with task-evoked activity

confounds removed (Cole et al., 2019)), this assumes that spontaneous activity flows

(or activity flow variation driven by trial-by-trial variability in stimuli) during a

given task use the same pathways as task-evoked activity flows. Finally, when using

nondirectional FC, this assumes that all connections are bidirectional and equally

weighted. Note that weighted and directed connectivity in macaque monkeys sug-

gests this tends to be the case (Markov et al., 2014). However, Sanchez-Romero

et al. (2023) demonstrated the utility of directed functional connectivity (sometimes

termed effective connectivity) approaches for making directional activity flow infer-

ences with fMRI data, while Mill et al. (2022b) did so with EEG data. Overall, the

assumption that the same pathways are involved in generating the data used for esti-

mating FC and the data used for estimating activations are not a problematic assump-

tion, since activity flow predictions are unlikely to be accurate if this were not true.

Structural connectivity-based activity flow models (Yan et al., 2021) assume that

activity flows occur over structural connections, which is almost certainly true. Such

models also assume that all structural connections are bidirectional and symmetri-

cally weighted, while the aggregate effect of synaptic weights (and perhaps other

functional details captured by FC estimates) is negligible on activity flows. This

is not a problematic assumption in the sense that activity flow-based predictions

are unlikely to be accurate if this is not true.

An important assumption regarding the data used in activity flow models is the

statistical independence of the connectivity and activity estimates. As covered in the

“Pitfalls of activity flow modeling” section, there are several ways that such statis-

tical circularity can bias activity-flow-based inferences. For instance, if task fMRI
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data are used for both FC and activation estimation, it is likely that activity-flow-

based predictions would be biased toward overly accurate predictions of “held-

out” activations. This is due to the same variance (e.g., large task-evoked activations

in two regions) driving both increased FC estimates and increase task-evoked acti-

vation estimates. This particular case is due to causal confounding (Fig. 2) from

external stimuli, such that regression of stimulus timing can remove this issue in

some cases (Cole et al., 2019), making it possible to use task-state FC with activity

flow modeling (Cole et al., 2021).

Most activity flow models have so far assumed stationarity of both FC and task-

evoked activations, given their focus on time-averaged effects. Thus, most activity

flow models will not capture changes to activity flows based on FC changes over

time or task-evoked activations varying from trial-to-trial. Note, however, that some

activity flow dynamics driven by transient task-induced activity are captured in the

EEG activity flow modeling approach (Fig. 3). It will be important for future studies

to go beyond time-averaged effects to better characterize activity flow dynamics.

Building, testing, interpreting activity flow models
From a broad perspective, activity flow mapping involves building a connectionist

artificial neural network from empirical connectivity estimates. In principle, substan-

tial biological detail can be added to these models, but the immense functional

expressiveness of connectionist-level modeling (Rogers and McClelland, 2014) sug-

gests that more can be learned by abstracting away from much of that detail when

possible. This reveals a tension between the mechanistic and simplicity principles

(Table 1), yet the optimal outcome from this tension should be the minimum mech-

anistic details necessary to explain/generate a given function of interest. Once this

connectionist model is derived from empirical data, task-evoked activations are

added, followed by the propagation and activation rules from standard connectionist

modeling (Ito et al., 2020). This “animates” the model, simulating functions of inter-

est and allowing inferences regarding the neural mechanisms underlying those func-

tions to the extent that the model’s constraints are empirically valid, the function is

accurately generated by the model, and subsequent analyses isolate key factors

within the model producing the function of interest.

More practically, one can build an activity flow model whenever one has both

connectivity and activity estimates for a set of neural nodes (neurons or neural popu-

lations). Building and evaluating an activity flowmodel involves six steps. For visual

overviews of how to build and test activity flow models, see Fig. 1 for slow imaging

methods (e.g., fMRI) and Fig. 3 for fast imaging/recording methods (e.g., EEG). Step

1 is estimating connectivity among all nodes, such as using multiple regression (Cole

et al., 2016). Step 2 is to estimate activity in all nodes, such as using an fMRI general

linear model to estimate average task-evoked activations across trials of each con-

dition. Alternatively, it is possible to use activity time series with activity flow

modeling (see Fig. 3), rather than averaging activity over time. Step 3 is to decide,
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based on the goals of the study, which nodes are source nodes and which are target
nodes. Source nodes’ activity levels are set to match empirical levels of activity in

those nodes, while target nodes’ activity levels are generated by the model. Step 4

involves running the model to generate activity in the target nodes across all task

conditions of interest. Step 5 is to evaluate model accuracy by comparing generated

to empirical activity in the target nodes. This can be done by a variety of similarity

measures, such as correlation, R2, or mean squared error. Assuming the generated

activity matches empirical reality, step 6 involves gaining additional insights into

the generative activity flow processes by interpreting the model features and inter-

mediate activity (and activity flows) generated by the model. This can involve

description of model features or interventions on model features (e.g., connections

or activity levels) to observe the impact of those interventions on the generated

activity.

For a detailed overview of how to implement activity flow modeling using the

open source Brain Activity Flow Toolbox please, see Cocuzza et al. (2022) and

the toolbox website: https://colelab.github.io/ActflowToolbox/. Activity flow map-

pingwas originally developed to relate standard task-evoked activations and standard

FC as estimated using fMRI (Cole et al., 2016). Thus, these standard measures can

be used to make activity-flow-based inferences (see Table 2). When optimizing

for the theoretical principles underlying activity flow modeling (Table 1), however,

other activity and connectivity estimates may be desired. The Brain Activity Flow

Toolbox is highly flexible, allowing use of a wide variety of possible activity and

connectivity types. Note, however, that activity flow mapping has only been adapted

to high-temporal-resolution data (in this case source-localized EEG) recently. Until

this is incorporated into the full toolbox, this adaptation of the approach can be

found here: https://github.com/ColeLab/DynamicSensoryMotorEGI_release.

As a further guide to conducting studies using activity flow modeling, a list of

steps are included next based on a set of recent activity flow modeling studies from

my lab (Hearne et al., 2021; Mill et al., 2022b; Ito et al., 2022; Sanchez-Romero

et al., 2023), which focus on identifying connectivity-based explanations of specific

neurocognitive phenomena:

1) Identify a brain function of interest, and obtain a reliable empirical

measurement of that function. Examples: cortical hemispheric lateralization

during language tasks; face selectivity in FFA (Fig. 4); motor selection and

responding in M1 (Fig. 3).

2) Work backward from the function of interest to hypothesized source regions/

times, excluding the to-be-generated function from the source set. Note that it is

possible to remove the function via artificial means, such as averaging across

hemispheres for a lateralization-generation study. For example, averaging the

source task-evoked activations across hemispheres would allow the activity flow

model to demonstrate that the model’s network architecture was sufficient for

generating lateralization, rather than simply spreading pre-existing lateralization

to held-out brain regions. As a best practice, it is usually important to run an
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analysis verifying that the function of interest is not present in the source set, such

that a connectivity-based transformation is required to generate that function in

the model.

3) Use activity flow modeling to generate the function of interest based on the

source activity flowing over connectivity, testing for above-chance predicted-to-

actual similarity.

4) Identify the key connectivity (and/or activity) properties that allowed for the

generation of the function of interest. Some example approaches include

simulated lesions (see Mill et al., 2022b; Ito et al., 2022), plotting/analyzing the

activity flow graph (see Hearne et al., 2021), scrambling/permuting connectivity

patterns to show dependence on those specific patterns, and graph theory to

identify connectivity properties (ideally comparing to a model with those

properties removed, or identifying correlations between the strength of those

properties and variation in the function of interest).

Pitfalls of activity flow models
Perhaps the most commonly encountered pitfall in activity flow modeling is the pos-

sibility of analysis circularity (Kriegeskorte et al., 2009) in the comparison between

generated and actual task-evoked activations. This typically arises from mixing

source and target node activity during activity flow simulation. This leads to some

portion of the to-be-predicted (target) data being erroneously added to the model-

produced activity, rather than having the model generate that activity independently.

For example, the spatial smoothness inherent in fMRI data creates circularity in

activity flow inferences between nearby voxels. Cole et al. (2016) dealt with this

issue by using a brain region atlas with regions 10mm apart and, when performing

voxelwise analyses, excluding all voxels within 10mm of each target voxel from the

set of source flows. This has become common practice in activity flow mapping with

fMRI data. Note, however, that tests of the impact of circularity with brain region

atlases (using cross-voxel averaged time series) that share borders have revealed that

there are typically only minimal impacts of circularity in these cases (see Activity

Flow Toolbox demo: https://colelab.github.io/ActflowToolbox/HCP_example.

html). Nonetheless, it is a best practice to avoid source-target pairs that are within

5mm of each other (and likely more with voxels larger than 2.5mm) with fMRI data.

The situation would appear to be much worse with EEG or MEG data, as volume

conduction can cause a source signal to traverse the entire brain, causing analysis

circularity for every possible source-target pair. Mill et al. (2022b) used a rigorous

multipronged approach to eliminate this issue, however. Most consequentially, sim-

ulated activity flows generated future activity to completely avoid the possibility that

volume conduction (which occurs with zero lag) could result in analysis circularity.

Additional steps increased the precision of activity flow inferences. First, high-

density EEG data and structural MRIs were used to localize sources with beamform-

ing. Second, sources were localized to the same set of regions with 10mm gaps used
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by Cole et al. (2016), reducing the chance of substantially mis-localized sources.

Third, rather than using standard temporal filters we used causal filters, which pre-

vent temporal circularity by avoiding leakage of future activity back in time. Finally,

the target region’s zero-lag time series was regressed out of all source time series,

while also being fit in an autoregressive manner, further improving isolation of

the target time series. Together, these steps both eliminate the chance of spatial anal-

ysis circularity while substantially improving inferential precision.

Another sourceof potential circularity is specific tousing task-state FC (rather than

resting-state FC or structural connectivity): Simultaneous sensory inputs leading to

inflation of FC and inflating activity flow prediction accuracy (Cole et al., 2019).

For example, watching a video of a car exploding will simultaneously stimulate your

primary auditory and visual cortices (A1 and V1), creating strong correlations

between those regions despite there being no direct connectivity between them. This

situation would create a false functional connection between A1 and V1, which could

then be used with an activity flow model to predict V1 activity based on A1 activity

(and vice versa). The resulting misleading inference would be due to a causal con-

found, wherein an external common cause has created the appearance of direct causal

influence for both the FC estimation algorithm and the activity flowmodel. Cole et al.

(2019) identified this confound and demonstrated that subtraction (or regressing out)

of cross-trial mean task-evoked activity is a way to remove the impact of the common

cause and correct for this confound. This is therefore the best practice when using

activity flow modeling with task-state FC (Cole et al., 2021).

A general pitfall of activity flow modeling is shared with any connectivity-based

study: the chance that inaccurate connectivity estimates will lead to an inaccurate

activity flow-based inference. Multiple studies have demonstrated that improving

FC estimation also improves activity flow-based task-evoked activation prediction

accuracies (Cole et al., 2016; Sanchez-Romero et al., 2023). We define FC improve-

ment as improved estimation of cross-neural-population causal interactions (Reid

et al., 2019), such as reducing the number of causal confounds. While prediction

accuracy typically increases with improved causal FC (since the true causal model

is among the best possible predictive models), it remains possible for prediction

accuracy to be improved by causal confounds (Reid et al., 2019; Sanchez-Romero

et al., 2023). The example previous with task-state FC confounds is a case in

point—the causal confound of correlated inputs can enhance prediction accuracy

of A1 activity from V1 (and vice versa). Therefore, it is essential to rely on bedrock

causal principles—rather than activity flow prediction accuracy alone—when devel-

oping connectivity methods for parameterizing activity flow models (Sanchez-

Romero and Cole, 2021; Sanchez-Romero et al., 2023).

A nonobvious case of analysis circularity can occur when a causal inference is in

the wrong direction. For example, it is known that primary motor cortex sends effer-

ent copies of its output back to brain regions that are inputs to primary motor cortex

(Khan and Hofer, 2018). This is less of a problem with high-temporal-resolution

methods like EEG, since the feedforward and feedback processes can be easily sep-

arated using dynamic activity flow mapping (Mill et al., 2022b). Separation of
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feedforward and feedback processes is much more challenging with a low-temporal-

resolution method like fMRI, however, since the feedforward and feedback pro-

cesses (which likely occur on the order of 100–200ms) are mixed into single fMRI

task-evoked activation estimates. There are three basic strategies (so far) to deal with

this issue:

First, simply make a weaker inference, wherein source activations caused target

activations and/or target activations caused source activations. Cole et al. (2016) ran
simulations to show that even this weaker inference is useful, as it can reveal the

extent to which distributed processes support the generation of task-evoked activa-

tions (explanation type 1 in Table 2).

Second, use multistep activity flow modeling starting from sensory inputs,

wherein only activation patterns in primary sensory regions (e.g., V1) are empirical

and all subsequent activity flows are based on that input (Cocuzza et al., 2022). This

isolates variance to feedforward processes from the inputs, eliminating the chance

for causal circularity after that initial step. There is some chance of feedback pro-

cesses impacting the initial input node, however, resulting in causal circularity in

the initial activity flow step. Cocuzza et al. (2022) dealt with this issue via signal

normalization to ensure that there was no selectivity for each visual category of inter-

est in V1 (the input node). In other words, the input node did not contain the function

of interest, ensuring that the function of interest was ultimately generated via trans-

formations on the input node’s activity.

Third, use of careful counterbalancing and averaging to remove the to-be-

generated effects of interest from the source task-evoked activations, such that feed-

back processing cannot explain observed effects. For example, Ito et al. (2022) use of

a counterbalanced factorial design, wherein all stimuli were paired with each task

rule and each motor response across trials. They then averaged across all task rules

and motor responses when estimating each stimulus input activation. The resulting

counterbalanced-and-averaged task-evoked activation estimates guaranteed that

motor responses generated via mixing of stimulus and task rule activity flows would

occur in a noncircular manner.

Together, these strategies reveal the flexibility of the activity flow modeling

framework. Even in a situation where causal circularity seemed inevitable, clever

use of activity flow algorithm development (e.g., a multistep approach) and exper-

imental design (e.g., counterbalancing) led to inferential improvements. I expect

future innovations to overcome current and future challenges to the activity flow

modeling framework.

How activity flow modeling relates to other approaches
Activity flowmodeling is highly related to a variety of other approaches to brain data

analysis and neural network modeling. Despite being similar to these approaches,

activity flow modeling does not appear to be redundant with any of them and can

add something unique to each of them. Indeed, it appears that any possible
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connectivity method—and any possible activity estimation method—can be incor-

porated into activity flow models, with unique inferences added in each case.

Furthermore, activity flow modeling can add unique inferences to standard task-

evoked neural activation studies, as well as theoretical computational models. These

points are illustrated next. Fig. 5 provides a general map along mechanistic and

empirical axes, illustrating the relationship to activity flow modeling to some other

approaches.
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FIG. 5

Relationship between activity flow modeling and some other approaches to modeling

neurocognitive phenomena (behavior and task-evoked activations). A subset of

neurocognitive modeling approaches are shown along two axes: mechanistic and empirical.

The placement of the text describing each approach indicates approximately (even within

each quadrant) its relative level of mechanistic vs empirical properties.Mechanistic is defined

here as the level of detail regarding the generative causal processes hypothesized to underly

the phenomena of interest. For example, box-and-arrow cognitive models (e.g., Baddeley,

2000) include fewer details regarding the causal events hypothesized to generate cognitive

processes than connectionist artificial neural networks, and even fewer than biologically

detailed theoretical models (e.g., Babadi and Abbott, 2010). Activity flow modeling was

developed to be more empirically constrained and empirically validated than artificial neural

network models, and more mechanistic than models that predict behavior (or task-evoked

activations) based on brain data (e.g., Smith et al., 2009, 2015). Two activity flow models are

shown, with the Cocuzza et al. (2022) V1-initiated model (Fig. 4B) being more mechanistic

than the original activity flow modeling approach (Cole et al. (2016)). This is because of the

additional details included regarding the generative causal processes underlying the

generation of the processes of interest (in this case visual category selectivity in human visual

cortex). Note that so far no activity flow model has been as mechanistically detailed as

biologically detailed theoretical models of neural function (but see Lee et al., 2022).
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Computational models (deep neural networks, recurrent neural networks, etc.).
Activity flow models can be considered to be computational models that—unlike

standard computational models—are derived from empirical brain data. Indeed,

activity flow models were developed based on connectionist artificial neural net-

works (ANNs), which consist of nodes and connections over which activity flows

according to a standard “propagation rule” (Rogers and McClelland, 2014; Ito

et al., 2020). Importantly, hundreds of studies over decades have revealed the seem-

ingly limitless potential of ANNs to model human cognition (Rumelhart et al.,

1986a,b; McClelland and Rogers, 2003) and can even exceed human cognition in

“deep neural network” versions of ANNs with many layers (Bengio et al., 2021;

Vaswani et al., 2017; Silver et al., 2018). This flexibility of ANNs is both a blessing

and a curse, as ANNs can be used to model anything (Hornik et al., 1989), yet they

often fit the training data differently than the human brain does. Indeed, this diver-

gence from the human brain is highly likely, given the immense architectural differ-

ences between ANNs and the human brain. A major motivation for developing the

activity flow framework was to add extensive empirical constraints in order to

improve ANN-based inferences regarding the human brain and human behavior.

Note that some prior studies already used empirical data as inputs to ANNs

(Hanson and Hanson, 1996), illustrating the utility of empirical data constraints

(as opposed to broad empirical constraints, such as use of activity propagation among

units to model brain processing) on neural network-based inferences. Furthermore,

given that humans have computational/cognitive abilities that ANNs do not, there is

potential to develop computational models with state-of-the-art abilities based on

brain data-derived modeling. In principle, using activity flow modeling to create

an ANN architecture directly from empirical brain connections should (1) provide

empirical neural data analyses with the theoretical insights typical of computational

modeling and (2) provide computational modeling with the scientific conclusiveness

and grounding in reality of empirical neural data analyses.

Some recent deep ANNs have taken inspiration from the network architecture of

the primate visual system, roughly matching the number of layers/steps used by pri-

mates to process visual stimuli (Yamins et al., 2014; see Yamins and DiCarlo, 2016,

for review). These studies have shown that—despite primarily being shaped by

learning an object recognition task—each ANN layer’s representations are similar

to the kinds of representations present in empirical multiunit recording data from

nonhuman primate brains. Together, these results demonstrate that even rough

approximations of the correct network architecture can (when augmented by connec-

tivity adjustments from task learning objectives) result in important insights into neu-

ral computations. Activity flow modeling goes beyond these models by using

network architectures directly specified by brain data (rather than task learning

objectives), incorporating many more brain network architectural features and thus

providing results that are likely to be even more informative regarding the network-

based cognitive computations carried out by the brain.

Resting-state FC (with fMRI, magnetoencephalography (MEG)/EEG, intracra-
nial EEG, etc.). Activity flow modeling has so far been primarily used to add

insight into the computational and cognitive contributions of resting-state FC
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(Cole et al., 2016; Ito et al., 2020). This complements other approaches that associate

resting-state FCwith cognition, such as correlating resting-state FC with activity pat-

terns (Smith et al., 2009) or individual differences in behavior (Cole et al., 2012;

Smith et al., 2015). This is accomplished by parameterizing activity flow models

using resting-state FC estimates and a subset of task-evoked activations, then testing

for the resulting model’s ability to generate held-out task-evoked activations linked

to cognitive phenomena. High generated-to-actual similarity (compared, e.g., to ran-

domly permuted models) provides evidence for the validity of the activity flow

model, and thus supports the associated model-based explanation for the generation

of task-evoked activations and associated cognitive phenomena. Notably, the mech-

anistic principle described previously further increases confidence in the validity of

the model-generated explanation, since it provides additional constraints on the

model beyond parameterization with empirical connectivity and activity (and testing

of the model via comparison with empirical data). As a case in point, we typically use

multiple regression (rather than field-standard Pearson correlation) to estimate FC

for fMRI activity flow predictions (Cole et al., 2016, 2021), given the improved

mechanistic/causal validity of multiple-regression FC due to reduced FC confounds

(Fig. 2).

A major reason to use resting-state FC (as opposed to FC during any given task

state) is the desire to identify FC architectures that generalize beyond specific states.

This idea of identifying a general network architecture has resulted in the develop-

ment of latent FC (McCormick et al., 2022), wherein factor analysis is used to iden-

tify the FC weight underlying a wide variety of task (and rest) brain states. Even

without using latent FC (which, in its standard form, requires each subject to perform

a task battery), this concept can be used to strengthen the generalizability of activity

flow inferences by simply estimating FCwith an independent brain state (e.g., rest, or

a different task) from the task state(s) of interest. For example, Hearne et al. (2021)

averaged FC across rest and a variety of tasks, excluding the task of interest from FC

estimation to reduce the chance of analysis circularity and help ensure the results

were based on a state-general brain network architecture.

Individual differences resting-state FC.As briefly described previously, a variety
of approaches use resting-state FC to predict individual differences in cognition and

behavior (Cole et al., 2012; Varoquaux and Poldrack, 2018; Smith et al., 2015; Shen

et al., 2017). Furthermore, some recent approaches use resting-state FC and/or struc-

tural connectivity to predict individual differences in task-evoked activations

(Bernstein-Eliav and Tavor, 2022; Tavor et al., 2016; Osher et al., 2016). Like these

approaches, the activity flow modeling approach is predictive. However, rather than

predicting data from held-out individuals, the activity flow approach predicts held-

out activations within individuals. While prediction can be implemented just as well

between individuals, causal brain mechanisms ultimately occur within individual

brains and are thus better served via within-individual models using causally

grounded connectivity estimates. As an illustration of this point, consider how chal-

lenging it would be to use an individual differences approach to infer the functions of

the human heart and circulatory system, given how little the relevant mechanisms
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differ between individuals (resulting in very small individual difference correlations)

and how the relevant biological mechanisms all interact in complex ways within

individual bodies. Thus, activity flow modeling differs from these other methods

in its primarily mechanistic and causal explanatory (rather than primarily predictive)

goal (see Table 1).

Task-state FC (with fMRI, MEG/EEG, intracranial EEG, etc.). Task-state FC

(also termed task-related FC)—FC estimated from brain data collected during task

performance—can be used nearly as easily as resting-state FC to make inferences

with activity flow modeling. This was recently demonstrated by Cole et al.

(2021), wherein task-state FC was shown to consistently improve activity flow pre-

dictions beyond those obtained using resting-state FC. This suggests that task-state

FC estimated from the same task as the to-be-predicted task activations contains

additional features that determine the flow of activity above and beyond those pre-

sent in other states such as rest. This makes an entirely new line of research possible,

wherein task-state FC changes specific to a given task condition are identified and

their functional relevance (for generating task-evoked activations) determined via

activity flow modeling. Note, however, the need to account for potential analysis

circularity when using task-state FC (covered next).

Structural connectivity (with diffusion weighted imaging (DWI), tract tracing,
etc.). A recent study demonstrated that DWI-based structural connectivity can be

used effectively in place of resting-state FC for activity flow modeling (Yan

et al., 2021). The theoretical inferences possible with structural connectivity are very

similar to those of resting-state FC. Indeed, one can think of resting-state FC as struc-

tural connectivity with additional information regarding the aggregate effects of syn-

aptic weights. However, relative to correlation-based FC, structural connections are

much more likely to reflect direct connections between neural populations

(Damoiseaux and Greicius, 2009). (Note that other FCmethods—such as regularized

partial correlation—can also be used to estimate direct connectivity.) Furthermore,

unlike FC estimates (and some forms of tract tracing), DWI-based structural connec-

tivity has a strong distance-based bias toward false-negative connectivity (Donahue

et al., 2016). Thus, there are some advantages and some disadvantages to using struc-

tural connectivity relative to FC for activity flow modeling.

Task-evoked activation-based approaches (GLMs, MEG/EEG event-related
potentials, multivariate pattern analysis (MVPA), etc.). Task-evoked activations—

changes in neural activity amplitude—are both the inputs and the to-be-generated

outputs of activity flow models. This reflects the principle of empirical grounding

(see Table 1), wherein we maximize contact with empirical data by using empirical

activations as input into each model. Importantly, our explanatory inferences also

focus on activations, given the mechanistic centrality of activations in standard neu-

ral theory. Specifically, the construct of a neural action potential entails both activa-

tion (i.e., an increase in neural activity amplitude) and the flow of activity to other

neurons. Neural activity amplitudes are thus ultimately based in action potentials/

spike rates, which cause local field potentials, large-scale electromagnetic fields,

synaptic activity, hemodynamic responses (Lee et al., 2010), and other measures
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of neural activity. Thus, activity flow modeling leverages standard, well-established

neural theory to interpret task-evoked activations and their flow/movement to other

neural populations via connectivity patterns. These inferences are then verified

empirically by comparing the generated task-evoked activations to the actual

task-evoked activations in each neural population for each task condition

(Fig. 1B). This theoretical background reveals that the ideal activation estimation

would use multiunit spike recording. In the absence of such ideal data in humans,

we use task GLMs with fMRI (Figs. 1 and 4), event-related potentials with MEG/

EEG (Fig. 3), or any of a number of possible activation-derived functional/cognitive

signatures.

Activity flow mapping has also been applied to gain insights into the flow of neu-

ral information content via modeling multivariate patterns of task-evoked activations

(Ito et al., 2017). To illustrate one possible approach, consider using MVPA to

decode information content in each brain region, then using the activity flow

approach to predict (based on other regions’ information content) downstream infor-

mation content based on the connectivity strength between the regions. In the interest

of maintaining the mechanistic principle (see Table 1) to improve our inferences,

however, we used a more nuanced approach (but see Schultz et al., 2022 for a simpler

approach). This involved first applying standard activity flowmapping between indi-

vidual vertices (the smallest unit of spatial measurement with cortical surface fMRI

data). All vertex-to-vertex resting-state functional connections between each pair of

cortical regions were estimated. Empirical task-evoked activity for each vertex in the

source region was used as input, then the activity flow calculation was applied to

predict task-evoked activation patterns in the target region. MVPA was then applied

to this predicted activity pattern, based on a decoder trained to distinguish the actual

activity patterns across task conditions. This procedure allowed us to infer the degree

to which brain regions shared task-related information via fine-grained resting-state

FC topology. More generally, this study demonstrated that activity flowmapping can

be readily applied to make inferences about multivariate patterns of activity (and

connectivity), suggesting the ability to extend activity flow mapping to a variety

of research questions relating to neural information representation. For instance, this

study was the basis of several recent studies that incorporated inferences regarding

the flow of task-evoked information-carrying activity patterns (Ito et al., 2022;

Schultz et al., 2022; Mill et al., 2022b; Hwang et al., 2022).

Encoding models. As discussed by Ito et al. (2020), activity flow models can be

considered to be connectivity-based encoding models. This contrasts with standard

encoding models (Huth et al., 2012; Naselaris et al., 2011) (Fig. 6A), which predict

task-evoked activations directly from stimuli (or task conditions) mapped (via a

regression weight) to a given neural population (e.g., an fMRI voxel). Note that stan-

dard task fMRI GLMs can be considered encoding models, though they are not typ-

ically tested as predictive models using properly held-out data. Activity flow models

also predict task-evoked activations but, rather than using a direct mapping from

stimulus features (or task conditions) to task-evoked activations, brain connectivity

is used to map task-evoked activations in one or more neural populations to
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From encoding and decoding to activity flow modeling. (A) Function–structure mapping
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(Naselaris et al., 2011). (B) Connectivity mapping, such as using diffusion MRI to estimate

structural connectivity or using fMRI to estimate functional connectivity. (C) Activity flow

modeling combines connectivity mapping with function–structure mapping, inferring how
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task-evoked activations in another neural population (Fig. 6C and D). Critically, this

connectivity-based approach is more mechanistic than standard encoding models

(Fig. 5), since connectivity is thought to be a primary mechanism by which task-

evoked activations are generated in the brain (Cole et al., 2016; Ito et al., 2020;

Mars et al., 2018; Passingham et al., 2002). Thus, even if an activity flow model

makes less accurate predictions of task-evoked activations than a standard encoding

model, that activity flow model will still provide insight due its additional

connectivity-based mechanistic details. The Ito et al. (2022) study is the most com-

plete example to date of the full stimulus-to-response activity flow modeling

approach illustrated in Fig. 6C. That study (Figs. 1C and 6D) started with standard

encoding models (visual, auditory, and task set activations) and combined them with

empirical connectivity patterns to generate cognitive representations. Those cogni-

tive representations then generated motor representations implementing context-

dependent cognitive task performance (as verified by a decoding model).

Open challenges and future directions
The success of activity flow modeling depends on the quality of the methods used to

estimate the task-evoked activations and connectivity that parameterize activity flow

models. Thus, improvements to connectivity and task-evoked activation estimation

are inevitably also improvements to activity flowmapping. For example, we recently

made the case for improving FC approaches by shifting the goal of FC research from

estimating associations to estimating causal relationships (Reid et al., 2019). Several

of our recent studies have supported improved causal inferences with improved FC

FIG. 6—CONT’D

functions are generated via activity flows over connectivity patterns. Rather than the

experimenter doing the encoding/decoding, activity flow modeling allows us to infer how

neural populations decode each other (de-Wit et al., 2016) to encode information when

implementing neurocognitive processes. (D) Results from Ito et al. (2022)—an example of a

full activity flow model mapping representational transformations all the way from stimulus

inputs to motor outputs in a context-dependent cognitive task. Each intermediate step can be

interpreted as both a decoding model (decoding input activity patterns) and an encoding

model (encoding output activity patterns). Decoding is used as the final step to determine

what behavior (i.e., motor actions) is generated by the model. The model generated above-

chance task performance. (E) Equation specifying motor (output layer) activity patterns in

panel (D), based on activity flowing between model layers. Note that the “hidden” layer is

labeled as “Generated conjunctive representations” in panel (D).
Panels A–C adapted from Ito, T., Hearne, L., Mill, R., Cocuzza, C., Cole, M.W., 2020. Discovering the

computational relevance of brain network organization. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2019.

10.005. Panels D and E adapted from Ito, T., Yang, G.R., Laurent, P., Schultz, D.H.,

Cole, M.W., 2022. Constructing neural network models from brain data reveals representational transformations

linked to adaptive behavior. Nat. Commun. 13 (673). https://doi.org/10.1038/s41467-022-28323-7.
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measures (Cole et al., 2016; Sanchez-Romero and Cole, 2021), resulting in improved

activity flow inferences (Sanchez-Romero et al., 2023).

Switching to a causal goal for FC also opens up new means to validate (and

improve) FC methods using causal stimulation approaches. For example, combining

a stimulation approach like transcranial magnetic stimulation (TMS) and a neuroim-

aging approach like EEG can yield causally grounded connectivity maps (Esposito

et al., 2020). This is based on evidence that TMS causes localized action potentials

(Mueller et al., 2014), along with the assumption that this results in stimulation-

evoked activity in brain regions downstream of the stimulated site. Importantly, this

assumption is based on the activity flow construct—movement of experimenter-

evoked activity between neural populations. Thus, activity flows are theoretically

central to this general approach, with activity flow modeling empirical testing this

via assessment of whether actual causal interventions (stimulations) applied to brain

regions aligns with activity flow-generated effects of such interventions. Some alter-

native combinations of causal stimulation and brain recording that can support this

FC validation approach include transcranial electric stimulation and fMRI (Kar et al.,

2020), intracranial stimulation and fMRI (Thompson et al., 2020), and intracranial

stimulation and recording (Sheth et al., 2022). Given the centrality of activity flows

to these simultaneous stimulation-recording approaches, these approaches have the

potential to both benefit and benefit from the activity flow framework. Indeed, activ-

ity flow modeling has strong potential for providing individualized predictions of

stimulation interventions to reduce symptoms (i.e., treatments) across a wide variety

of brain disorders (Sanchez-Romero et al., 2023).

Activity flows are directly tied to action potentials, given that action potentials

are the only known mechanism for long-distance neural signal propagation in the

brain. This theoretical link supports the likely centrality of activity flows in neural

processing. There remains an important open challenge to confirm this link, how-

ever, given the implication that measures like fMRI task-evoked activations and

FC could be more directly tied to action potentials (spike rates) with a simple math-

ematical transformation (i.e., estimated activity flows). As Carl Sagan said, extraor-

dinary claims require extraordinary evidence. Such evidence in this case could come

from simultaneous blood oxygen level dependent (BOLD) response measurements

and multiunit recording in brain region pairs, ideally with varying levels of connec-

tivity among region pairs. The prediction that activity flow estimation brings fMRI/

BOLD signals closer to spike rates would be supported if task-evoked activity flows

better reflect spike rates than the BOLD task-evoked activations and FC estimates

that went into those activity flow estimates.

An open challenge for the recently developed high-temporal-resolution activity

flow mapping approach (Mill et al., 2022b) is the possibility of subtle analysis cir-

cularity driven by temporal autocorrelation. Specifically, it will be important to use

activity flow to disambiguate between truly generating the onset of task-related

information (information transformation) vs modeling its spread (information trans-

fer) across the brain after that initial generation. For example, if a temporally distrib-

uted task-evoked activation is the function of interest, the start of this activation may
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not be predicted, yet once the start of the activation becomes the input to the model it

can accurately predict the rest of the activation’s spatiotemporal pattern. In the end

such a model would be just pattern completing the temporal profile of the activation

rather than generating it. One potential solution is to define the entire activation as

the function of interest, then ensure the inputs to the activity flow model do not

include any portion of the activation itself, based on either spatial or temporal (or

both) restriction of the inputs. This issue reveals how activity flow modeling touches

on the deep philosophical question of emergence (Mediano et al., 2022). It will be

important to clarify best practices surrounding the identification of neurocognitive

phenomena of interest and what features can interact within activity flow models

to properly explain their emergence.

Another open challenge for activity flow modeling is to expand it to more inva-

sive methods, potentially improving causal inferences by measuring more direct neu-

ral signals relative to the noninvasive methods used so far. However, most invasive

methods have a much smaller field of view than fMRI and MEG/EEG, reducing

the chance of detecting and controlling for causal confounds when estimating FC

(Reid et al., 2019; Pearl and Mackenzie, 2018). Thus, it is not necessarily the case

that invasive methods will improve activity flow inferences. Nonetheless, the funda-

mental role of action potentials in neural processing, and the clear link between

action potentials and activity flows, suggests that activity flow modeling can add

insights into all manner of neuroscience data. Some of this potential has been real-

ized in the form of a multiregion multiunit recording study in nonhuman primates

(Ito, 2021; Chapter 4). This study demonstrated the potential for activity flow map-

ping to link intrinsic FC and task-evoked activations even when using invasive spike

recordings. Similarly, an intracranial EEG study was conducted with human partic-

ipants with intractable epilepsy, revealing that high-temporal-resolution activity

flow mapping is successful in modeling the generation of spectrally resolved lan-

guage processes based on resting-state FC (Mill et al., 2022a). Together, these stud-

ies point the way toward utilizing activity flow modeling across the wide variety of

available neuroscience methods, extracting new insights from those methods and

ultimately driving discovery of distributed mechanisms underlying brain functions.

Take-home points
• Activity flow is the movement of activity between neural populations (also

termed: activity propagation, information flow, activity spread, or activity

diffusion)

• Activity flow modeling is a flexible approach that allows for building (based on

empirical brain data) and empirically testing network models of brain function

• Task-evoked brain activity is used as input to simulate the flow of activity over

empirically estimated brain connections, which is then tested for the ability to

generate a neural or cognitive phenomenon of interest
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• Examples of generated neurocognitive phenomena from previous activity flow

mapping studies: face selectivity in the fusiform face area, task rule

representations in the frontoparietal control network, and motor responses

decoded from M1 activity (i.e., behavior) during a context-dependent decision-

making task

• Four general principles guide activity flow modeling, together optimizing for

clear and empirically grounded explanations of neurocognitive phenomena:

(1) Simplicity/abstraction, (2) Generative, (3) Mechanistic/causal, and

(4) Empirically constrained (data-driven)

• Any connectivity method (and any activity estimation method) can be

incorporated into activity flow models

• Activity flow modeling can add unique inferences to standard task-evoked neural

activation studies, as well as theoretical computational models.
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Appendix: How activity flow modeling relates to additional
other approaches
Dynamic causal modeling (DCM) (fMRI, MEG/EEG). DCM is a functional connec-

tivity approach (often termed effective connectivity) that estimates causal inter-

actions from neural time series by fitting highly parameterized models using a

variational Bayesian estimation approach (Friston et al., 2003). In principle, DCM

could be used with activity flow modeling just like any other FC measure. Indeed,

DCM is highly compatible with the activity flow framework, given the emphasis on

causal mechanisms and connectivity in both approaches. However, activity flow

modeling goes further than DCM in characterizing the generative mechanism of neu-

rocognitive processes of interest. This is due to the additional building of generative

models—which could be based on DCM estimates in this case—focused on predict-

ing each neurocognitive process of interest in independent data. This added value of

activity flow modeling reflects the fact that the DCM framework does not demon-

strate an ability to predict/generate neural effects in independent data. Additional

inferential value can be added using recent activity flow modeling innovations, such

as simulated lesioning to infer the importance of each model feature in generating

the neurocognitive process of interest (Ito et al., 2022; Mill et al., 2022b).

Other complex neural modeling approaches. A wide variety of complex neural

(and cognitive) modeling approaches exist. In principle, activity flow modeling
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could be integrated with and complement any of them. For example, the “joint

modeling of neural and behavior” approach (Palestro et al., 2018) identifies neural

variance linked to behavioral variance, which could also be linked to activity flow

processes as mediators between sensory input and motor output. A similar modeling

framework (in that it encompasses both neural and behavioral data) is the dynamic

neural field theory modeling framework (Wijeakumar et al., 2017). These models

appear to be initially hand-built (based on researchers’ assumptions/hypotheses),

then researcher-specified free parameters are fit to neural and behavioral data. Activ-

ity flow modeling could be used to empirically specify/constrain the network archi-

tecture within each neural field theory model. This integration has the potential to

improve inferences regarding how empirical brain connectivity specifies cognitive

functionality in the human brain.

As another example, The Virtual Brain (Ritter et al., 2013) may initially appear to

encompass activity flow modeling given that it generates activity time series based

on (typically structural) connectivity. However, it appears the inferential algorithm

underlying activity flow mapping—using empirical activity and connectivity to gen-

erate held-out task-related neurocognitive functions—is not a standard part of The

Virtual Brain. Instead, The Virtual Brain uses complex biophysical simulation equa-

tions to model neural mass model dynamics, typically using randomly generated

spontaneous activity as a starting point (rather than empirical activity). Thus, activity

flow modeling could be readily incorporated into The Virtual Brain to expand the

inferential power of the framework. One promising avenue for this incorporation

of activity flow modeling is the ability to input task stimulus timing (or brain stim-

ulation) time series into The Virtual Brain simulations. It appears this feature has not

been widely utilized in published The Virtual Brain studies, as the primary utilization

of this modeling framework has been to simulate resting-state brain dynamics via

simulated dynamics over structural connectomes (Martı́-Juan et al., 2023). More

generally, it is worth noting that the simplicity/abstraction principle underlying

the activity flow modeling framework (see Table 1) suggests the need to test The

Virtual Brain’s assumption that complex neural mass modeling equations are neces-

sary to accurately generate neurocognitive functionality.

One important exception to the focus on resting state (rather than task state) pro-

cesses with The Virtual Brain has been a series of studies incorporating a biologically

realistic task-performing model (Tagamets and Horwitz, 1998) into The Virtual Brain

modelingsoftware (UlloaandHorwitz,2016;Liuetal., 2022;UlloaandHorwitz,2018).

The primary advantages of this integration appears to be making more specific predic-

tions regarding the anatomical locations corresponding to each of the original model’s

nodes, as well as more realistic generation of noise via The Virtual Brain’s standard

structural connectome and dynamical equations. Critically, however, the model’s

task-performing elements remain completely specified by the original version of the

model, which was created via a mix of the researchers’ domain knowledge and hand-

coded connectivity (Tagamets andHorwitz, 1998). Thus, unlike activity flowmodeling

(Ito et al., 2022), it appears that task-related functionality has not been generated by

lower-level activity and connectivity constraints within The Virtual Brain. This
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represents a major opportunity to increase the task-related cognitive relevance of The

Virtual Brain simulations via incorporation of activity-flow-like modeling concepts.

Feedforward predictive modeling of the visual system. Activity flow modeling

has recently been applied specifically to the visual system (Cocuzza et al., 2022),

leveraging rich knowledge regarding visual processes in the brain to enhance activity

flow models (and gain further insight into the visual system). Several other

approaches have been developed based on similar insights regarding the role of activ-

ity flows in generating activity throughout the visual system. First, Haak et al. (2013)

developed connective field modeling, which fits Gaussian spatial models that map

visual receptive fields between cortical areas. This approach is directly related to

the concept of activity flow over connectivity, but is more specifically related to

topographic organization of representations within the visual system. It appears that

the activity flow modeling approach could extend this approach to gain insight into

the activity flow relationships among nontopographic features in the visual system.

By the same token, connective field modeling could refine activity flow modeling to

better reveal when activity flow projections are topographic in organization. A sec-

ond approach, voxel-to-voxel predictive modeling (Mell et al., 2021), is again

focused exclusively on the visual system, but is more directly related to activity flow

modeling. Like activity flow modeling, relationships between neural populations

(weights) are estimated, then source activity multiplied by the weights are used to

predict target activity. However, rather than using connectivity per se, the voxel-

to-voxel weights appear to be based on the task-evoked activities themselves. This

results in a distinct set of inferences, wherein the role of connectivity in the predicted

relationships is less clear. It appears that the voxel-to-voxel predictive modeling

approach could be enhanced by the use of functional or structural connectivity to

gain a more mechanistic understanding of the relationships between visual areas.

Activity flow modeling could also be enhanced by taking insights from voxel-

to-voxel predictive modeling, especially with regard to inferring receptive field

properties, the relationship to stimulus encoding models, and comparing results to

deep neural network models of the visual system.
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Glossary
Activity flow The movement of activity between neural populations.
Activity flow models Empirically constrained simulations of the generation of neuro-

cognitive functions via activity flow processes.
Functional/effective connectivity (FC) FC methods estimate the statistical association

between neural time series. The typical theoretical target of FC methods is the

causal relationship between the neural populations contributing those time series.

However, FC methods vary substantially in their degree of causal validity, with no

current FC method thought to yield perfect causal inferences.
Generative understanding A way of comprehending a phenomenon and the system

that generates it such that the necessary and sufficient conditions of the system

are known for what generates that phenomenon. This is especially useful for pre-

dicting the impact of novel configurations of the system on the phenomenon of

interest, such as a system break down (e.g., brain disorder) or intervention

(e.g., brain treatment or brain enhancement).
Held-out activity Brain activity that is independent from the activity used to build a

model, such that a prediction of that activity from the model would be logically

noncircular. In the context of activity flow modeling, this refers to independence

between the target activity that is to be generated/predicted by a model and the

data used to build that model.
Neurocognitive function A neural phenomenon associated with a cognitive or behav-

ioral process, which can be a target of an explanation. Note that function does not

imply that the to-be-explained phenomenon is the ultimate purpose of the involved

neural populations. Examples: face selectivity in the fusiform face area, behavior

being driven by primary motor cortex activity.
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Prediction (versus causality) The generation of data that can be compared to a phe-

nomenon of interest, with a better prediction resulting from a better match between

the generated and actual phenomenon. Some noncausal (e.g., statistical) models

can produce accurate predictions, such that the true causal model/process is only

one of a variety of good predictive models. However, most possible (e.g., random)

models are not good predictors, making good prediction a necessary but not suf-

ficient condition for a model being the true causal model.
Resting-state functional connectivity FC estimated using functional brain data (such

as fMRI) while a participant rests.
Task-evoked activity Activity elicited by experimenter-presented stimuli, such as

sensory input and task instructions.
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