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A B S T R A C T   

Brain activity flow models estimate the movement of task-evoked activity over brain connections to help explain 
network-generated task functionality. Activity flow models have been shown to accurately generate task-evoked 
brain activations across a wide variety of brain regions and task conditions. However, these models have had 
limited explanatory power, given known issues with causal interpretations of the standard functional connec
tivity measures used to parameterize activity flow models. We show here that functional/effective connectivity 
(FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. We 
progress from simple to complex FC measures, with each adding algorithmic details reflecting causal principles. 
This reflects many neuroscientists’ preference for reduced FC measure complexity (to minimize assumptions, 
minimize compute time, and fully comprehend and easily communicate methodological details), which poten
tially trades off with causal validity. We start with Pearson correlation (the current field standard) to remain 
maximally relevant to the field, estimating causal validity across a range of FC measures using simulations and 
empirical fMRI data. Finally, we apply causal-FC-based activity flow modeling to a dorsolateral prefrontal cortex 
region (DLPFC), demonstrating distributed causal network mechanisms contributing to its strong activation 
during a working memory task. Notably, this fully distributed model is able to account for DLPFC working 
memory effects traditionally thought to rely primarily on within-region (i.e., not distributed) recurrent processes. 
Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to 
identify network mechanisms underlying cognitive computations in the human brain.   

1. Introduction 

Most traditional explanations of cognitive phenomena are based on 
focal measures of neural responses to experimental interventions 
(Cabeza and Nyberg, 2000; Saxe et al., 2006). While this approach has 
been successful in establishing robust associations between brain re
gions and cognitive tasks (for example, dorsolateral prefrontal cortex 
with working memory tasks or fusiform face area with face visual 
stimuli), these associations by themselves do not explain how task ac
tivity in a brain region is generated from underlying causal processes (e. 
g., brain network interactions). Patterns of task-related neural activa
tions have also been used in multivariate analyses to explain differences 
between task conditions (Kriegeskorte et al., 2008; Norman et al., 2006), 
but also fail to mechanistically explain how activations are generated 

from underlying causal processes. Another strategy to characterize as
sociations between cognitive tasks and brain regions is to analyze 
changes in inter- or intra-region connectivity due to task manipulations 
(Gordon et al., 2014; Jolles et al., 2013; Vatansever et al., 2017). 
However, these studies do not typically assess the role of task-related 
neural activations, which are more clearly linked to cognition and 
behavior (e.g., activations in M1 are known to cause motor responses). 
Other explanations of cognitive effects are based on artificial neural 
network models that try to reproduce empirically observed cognitive 
responses (Thomas and McClelland, 2008). However, most of these 
models are not constrained by empirical brain data (biological network 
architectures or signals), and thus provide only limited mechanistic 
insight. While each approach contributes important information 
regarding the role of brain processes in behavior and cognition, these 
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approaches do not provide empirically-supported neural explanations of 
how behavioral and cognitive phenomena are causally generated. 

Developed by considering the limitations of these strategies to 
explain cognitive phenomena, the activity flow mapping (actflow) 
framework (Cole et al., 2016) uses empirical brain data to produce a 
generative connectionist model of task-related activations. The resulting 
model integrates empirically-derived functional/effective connectivity 
(FC) networks and empirical task activations (Fig. 1F-G) to provide 
data-driven mechanistic insight into network-supported cognitive pro
cesses in the human brain. 

The actflow framework has been previously applied in a variety of 
studies to investigate: the flow of task-related activity via whole-brain 
resting-state networks (Cole et al., 2016); the fine-scale transfer of 
information-representing task activity between specific pairs of func
tionally connected regions (Ito et al., 2017); the relevance of task-state 
functional networks in communicating task-related neural responses 
(Cole et al., 2021); the disruption of task activations from altered 
functional networks in pre-clinical Alzheimer’s disease (Mill et al., 

2020); the disruption of task activations from altered activity flows in 
schizophrenia (Hearne et al., 2021); the role of specific brain networks 
in a visual shape completion task (Keane et al., 2021); and the cortical 
heterogeneity of localized and distributed cognitive processes (Ito et al., 
2020). These studies evidence that actflow modeling can successfully 
provide insights about the underlying network processes generating the 
observed neural responses caused by exogenous cognitive task 
manipulations. 

In the aforementioned studies, actflow models parameterized with 
FC networks estimated with Pearson correlation (pairwise association; 
the field standard) or with multiple regression (fully conditional asso
ciations) provided accurate predictions of task-evoked activations, 
suggesting that these methods can capture to some degree, relevant 
properties of the mechanisms supporting task-related functionality. 
Nevertheless, these FC methods pose limitations for the interpretability 
and intervention potential of actflow models. For example, they are 
inherently undirected, thus from their results we cannot make inferences 
about the causal direction of the activity flow evoked by a task 

Fig. 1. Causally-grounded functional connectivity methods can be used to build directed activity flow models. (A) An example of a true causal FC network, denoted as W, for 
five neural regions time series Z, X, Y, D and K. The green arrows represent direct causal functional associations between the time series. (B) The expected network 
when using Pearson correlation FC to recover the true mechanism from panel B. Green lines indicate correctly inferred undirected connections, while red dashed lines 
indicate incorrectly inferred connections. Incorrectly inferred connections resulted from not controlling for one causal confounder (X ← Z → Y) and two causal chains 
(Z → X → D and Z → Y → D). (C) The expected network when using multiple regression FC. The association between each pair of time series is conditioned on the rest 
of the regions to control for confounders and chains. In this case, the incorrectly inferred connections resulted from three conditioned-on causal colliders (X → D ← Y, 
X → D ← K and Y → D ← K). (D) The network recovered by combinedFC. Thanks to its zero-correlation check—based on the statistical behavior of colliders (see 
CombinedFC section)—combinedFC removed two of the spurious connections from conditioned-on colliders. Nevertheless, for this mechanism the zero-correlation 
check cannot remove the remaining spurious connection because the confounder (X ← Z → Y) forces a non-zero correlation between X and Y. (E) The directed 
network recovered by the PC algorithm. By iteratively testing associations with conditioning sets of increasing size and then applying a series of orientation rules, PC 
can infer the true FC mechanism from panel C, with the exception of the direction of two connections (see the PC algorithm section for details on why some 
connections cannot be oriented by this method). (F) Activity flow predictive model. The inferred task-evoked activation Â of a held-out neural region X (yellow box) 
is predicted as a linear function of the inferred FC weights (Ŵ, green bidirectional arrows) and the actual task-evoked activations A from the rest of the i connected 
regions. The bidirectional arrows reflect the ambiguity of the inferred FC with respect to the true causal orientation. (G) Directed activity flow model using data- 
driven information about the causal direction of the functional connections. The task-evoked activation Â of a neural region X (yellow box) is predicted as a 
linear function of the causal FC weights (Ŵ, green unidirectional arrows) and the actual task-evoked activations A from the i causal source regions. The unidirectional 
arrows convey that directed FC methods can be helpful to infer the causal direction of connections. 
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manipulation. In addition, these FC methods are prone to false-positive 
inferences in the presence of uncontrolled common causes (causal con
founders, X ← Z → Y), uncontrolled causal chains (X → Z → Y), and 
incorrectly controlled common effects (causal colliders, X → Z ← Y) 
(Table 1) (Reid et al., 2019). We hypothesize that these false-positive 
connections can bias actflow predictions by producing incorrect esti
mations of the true underlying functional networks supporting task 
computations. 

To overcome these limitations, we propose building actflow models 
parameterized with FC methods that more effectively use statistical 
conditional independence information and statistical causal principles 
to reduce the risk of false-positive connections and infer (when possible) 
the direction of connections. In an ideal biologically-constrained 
mechanistic actflow model, task-related activations of a target neural 
region would be predicted from the actual activations of only its true 
direct causal source regions (Fig. 1H). Pursuing this kind of mechanistic 
model implies that we are not only interested in predicting neural ac
tivations but also in hypotheses about how a target neural region may 
react to exogenous (e.g., experimental interventions using transcranial 
stimulation) or endogenous (e.g., age-related cognitive decline) changes 
in its afferent region activations, connectivity patterns or both. This 
interest in mechanism reflects both a desire for fundamental causal 
understanding of the brain as a complex system, as well as the practical 
desire to develop causal interventions to cure (or reduce the burden of) 
brain diseases (i.e., treatments). 

We first test our hypothesis by evaluating the impact of different FC 
methods on actflow model prediction accuracy in simulations and 
empirical data. We order FC methods on a continuum according to the 
complexity of each method’s underlying algorithm, defined by the 
amount of statistical conditional independence information and statis
tical causal principles used. This reflects the desire for many neurosci
entists to use the simplest method possible—due to complexity adding 
more features needing validation/justification while also making it 
more difficult to communicate findings. This can be thought of as a kind 
of Occam’s Razor principle, in which the cost of additional methodo
logical complexity must be justified by substantially better results in 
terms of empirical validity and/or theoretical insight. We start with the 
field-standard Pearson pairwise correlation (no use of conditional in
dependence information), followed by multiple regression (use of fully 
conditional independence information), then combinedFC (San
chez-Romero and Cole, 2021) (use of fully conditional independence 
information and causal principles to detect the presence of causal col
liders), and finishing with the Bayesian network-based PC (Peter-Clark) 
algorithm (Spirtes et al., 2000) (iterative use of increasing size sets of 
conditional independence information and use of causal principles to 
detect causal colliders and orient connections) (Fig. 1A-E and Table 1). 
We use the PC algorithm as we consider it a tractable example of how 
causal principles can be used to effectively integrate pairwise and con
ditional independence information and also orient connections (see PC 
algorithm section, Fig. 1E, Table 1 and limitations in Discussion). 

While we expect that FC methods leveraging more conditional in
dependence information and causal principles will produce better act
flow predictions (by reducing the deleterious effect of spurious 
pathways), we are aware that not controlling for confounders can still 

produce models with prediction potential. In principle, we could predict 
information from region Y using information from region X even if X is 
not a cause of Y (or vice versa), as long as they are confounded by a third 
region. This suggests the possibility of FC models with good prediction 
but spurious causal information (a spurious connection between X and Y 
in this example). Critically, however, even if prediction accuracy were 
lower (but above chance) for an FC method grounded in statistical 
causal principles, this study’s results would support its practical utility 
(i.e., for predicting empirical effects) in addition to its theoretical utility 
(i.e., improving causal interpretability of the resulting model). This re
flects our joint goals of using actflow to produce predictive models that 
generate neurocognitive processes of interest (e.g., fusiform face area 
activity during face perception) while also being grounded in statistical 
causal principles. 

Finally, we illustrate with empirical data how actflow model-based 
explanations can go beyond isolated accounts of localized neural acti
vation, or isolated accounts of neural connectivity patterns, by providing 
mechanistic insight into the network processes that generate the 
observed neural responses caused by cognitive task manipulations. 
Specifically, we build a directed actflow model focusing on a single re
gion of the DLPFC. This model is parameterized with PC-algorithm FC, 
with the goal of identifying likely network interactions contributing to 
n-back working memory task activity. Notably, traditional accounts of 
DLPFC activity during working memory tasks focuses on persistent ac
tivity in DLPFC (Curtis and D’Esposito, 2003; Sreenivasan et al., 2014), 
which is typically thought to result from within-region recurrence 
(Wang et al., 2013). In contrast, actflow models rely exclusively on ac
tivity from distal brain regions, such that an actflow model accurately 
generating DLPFC activity during a working memory task would provide 
evidence for an alternate (or complementary) distributed account of 
working-memory-related DLPFC activity. 

Confirmation that FC methods that leverage statistical conditional 
independence information and statistical causal principles lead to ac
curate actflow predictions would demonstrate the utility of using act
flow models from brain data to develop mechanistic explanations of 
cognitive functions from exogenous task manipulations. The mecha
nistic insight provided by actflow models represents a starting point for 
what could be considered a full neurocognitive mechanistic explanation, 
which would identify the full chain of effects from exogenous stimulus 
presentation to network-supported cognitive neural activations to 
behavioral response (Ito et al., 2020; Weichwald and Peters, 2021). 

2. Materials and methods 

2.1. Activity flow mapping 

Activity flow mapping (actflow) is a predictive model to explain local 
task-related neural activations as the product of task-evoked activity 
flowing through pathways of functional brain connections (Cole et al., 
2016). Formally, for a set of measured brain regions V, the task-related 
activation AX for brain region X, can be expressed as AX=f(WX, AV\{X}), 
where WX are the connections of X with the rest of the regions, AV\{X} are 
the activations of all regions in V except X, and f() is a function relating 
connections and activations. Following (Cole et al., 2016), we assume f() 

Table 1 
Ability of FC methods to account for the presence of basic causal structures and to infer orientations. When these causal structures are not accounted for, FC methods will infer 
false-positive connections. For example, in the presence of a causal confounder, Pearson correlation will infer a false-positive connection X — Y since it does not 
account for the confounding effect of region Z.   

Causal confounder 
X ← Z → Y 

Causal chain 
X → Z → Y 

Causal collider 
X → Z ← Y 

Causal confounder & collider 
X ← Z → Y & X → D ← Y 

Orientations inferred 

Pearson correlation Does not account for Does not account for Accounts for Does not account for No 
Multiple regression Accounts for Accounts for Does not account for Does not account for No 
CombinedFC Accounts for Accounts for Accounts for Does not account for No 
PC algorithm Accounts for Accounts for Accounts for Accounts for Some  
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is a linear function and implement the actflow model for a particular 
held-out region as ÂX=Σi∈V\{X}ŴiXAi, where the predicted activation 
(ÂX) is the sum of the actual activations of all other regions (Ai), 
weighted by their estimated connectivity values with X (ŴiX) (Fig. 1F). 
(This function corresponds to a standard neural network linear propa
gation and activation rule (Hanson and Burr, 1990; Rumelhart et al., 
1986). 

Theoretically, the Markov blanket of a target variable is the set of its 
direct causes, direct effects and other direct causes of those direct ef
fects. This set of variables accounts for all relevant information to 
optimally predict the target variable (Guyon et al., 2008). The above 
definition of actflow does not differentiate between direct causes and 
direct effects in the connectivity pattern, and predicts using all inferred 
connected regions. By using all connected regions to predict the acti
vation of a particular held-out region we are leveraging information 
from its direct causes (as the linear combination of the afferent 
(incoming) connection weights and the source activations), and from its 
direct effects (as the linear combination of the efferent (outgoing) 
connection weights and the effect activations). This suggests that an 
actflow model can be parameterized with an undirected FC method (that 
does not differentiate causes and effects) and achieve good prediction 
accuracy, since it is effectively using a subset of the Markov blanket 
(specifically, direct causes and direct effects). In our analysis we 
compare actflow models parameterized with undirected FC networks 
derived from: correlation, multiple regression, combinedFC and the 
undirected output of PC (see PC section). 

Despite the likelihood that using all truly connected regions is 
optimal for predicting task-evoked activations, we want to impose a 
causal biological constraint on the actflow models, such that the acti
vation of a held-out target region is predicted from the actual task- 
evoked activations of its direct causal sources and the corresponding 
afferent connection weights (Fig. 1G). From a mechanistic perspective, 
our goal is to hypothesize how the activation of a target region may react 
to changes in its direct-cause activations. Nevertheless, moving towards 
this kind of biologically-constrained predictive model comes with a 
potential reduction in predictive power, since we will predict a target 
region only using its direct causes, not leveraging the full Markov 
blanket. 

With this idea in mind, we define a biologically-constrained mech
anistic linear actflow model as ÂX=Σi∈V\{X}Ŵi→XAi, where for a set of 
measured regions V, Ŵi→X are the estimated directed connections from 
direct sources i to held-out target region X. In contrast to the first actflow 
definition (Fig. 1F), this model uses only the estimated direct sources to 
predict the task-evoked activations for a target region (Fig. 1G). The 
challenge with this actflow mechanistic model is that to obtain con
nectivity estimates Ŵi→X, we necessarily need a directed FC method. 
Here, we use the PC algorithm to estimate the required directed 
networks. 

Finally, as in Cole et al. (2016), we measured the prediction accuracy 
of actflow models using the Pearson correlation r between predicted and 
actual activations, and compared it across the different FC methods used 
to parameterize the models. Activity flow mapping prediction and 
evaluation analyses were performed with the Python open-source Act
flow Toolbox (available at https://colelab.github.io/ActflowToolbox). 

2.2. Functional connectivity methods 

Here, we ordered functional connectivity methods in a continuum 
depending on the amount of statistical conditional independence in
formation and statistical causal principles used, and focus on its limi
tations regarding risk of inferring false-positive connections and 
capability to infer direction of connections. 

2.2.1. Correlation 
We start with pairwise associative methods, such as Pearson corre

lation or mutual information (a way to measure non-linear statistical 

associations). These methods do not use conditional independence in
formation and do not hold causal assumptions about the generating 
mechanism giving rise to the observed association. For example, a non- 
zero Pearson correlation between the time series of two brain regions X 
and Y indicates a functional association between these regions, but no 
further knowledge about the nature of this association can be derived 
from it. We cannot conclude if the observed non-zero pairwise correla
tion resulted from a causal mechanism where one brain region is the 
direct cause of the other (X → Y or X ← Y), or one region is the indirect 
cause of the other (causal chain, X → Z → Y), or a third region is a 
common cause of the two regions (causal confounder, X ← Z → Y) 
(Reichenbach, 1956), or a combination of these cases. This ambiguity 
impedes mechanistic interpretations of correlation-based network con
nections. In practice, pairwise associative methods do not control for the 
effects of causal confounders and chains, thus inferring false-positive 
connections in the estimated FC network (Fig. 1B and Table 1). In 
linear activity flow models, these false-positive connections will create 
false pathways through which task activity will be incorrectly added, 
biasing the prediction of the task-evoked activations. 

We applied Pearson correlation rXY=cov(X,Y)/(std(X)std(Y)), where 
X and Y are time series for two brain regions, cov() is the sample 
covariance and std() is the sample standard deviation; and used a two- 
sided z-test with significance threshold of p-value<α=0.01, for every 
individual simulation and empirical dataset. 

2.2.2. Multiple regression 
Multiple regression is used to compute the statistical association 

between one region time series and every member of a set of regressor 
time series—in FC analysis this set is usually the rest of the brain regions 
in the dataset—where each association is conditioned on the rest of the 
regressors (fully conditional association). Conditioning on the rest of the 
regions in the dataset controls for false-positive connections arising from 
the effect of causal chains and causal confounders. Despite controlling 
for this type of false-positive connections, a fundamental limitation of 
multiple regression as an FC method is that by fully conditioning on the 
rest of the brain regions it may infer a false-positive association between 
two unconnected regions if these two regions are causes of a third one 
(collider, X → Z ← Y) (Fig. 1C and Table 1) (Berkson, 1946; Bishop, 
2006; Kiiveri et al., 1984; Reid et al., 2019). The presence of colliders in 
a causal structure—which we cannot tell in advance—implies that any 
connection inferred by multiple regression could in principle be a 
false-positive connection. For example, Sanchez-Romero & Cole (2021) 
showed that in simulated networks with a larger proportion of colliders 
relative to confounders, multiple regression returns a higher number of 
false-positive connections than correlation. 

We applied ordinary least squares linear multiple regression 
Y=β0+β1X1+β2X2+…+βkXk+eY, where Y is the time series for a brain 
region, X1 to Xk are the time series for the rest of the regions in the 
dataset, β1 to βk are the corresponding regression coefficients, β0 is the 
intercept and eY is the regression error of Y. We used a two-sided t-test 
for the regression coefficients with significance threshold of p-val
ue<α=0.01, for every individual simulation and empirical dataset. 

2.2.3. CombinedFC 
The combinedFC method (Sanchez-Romero and Cole, 2021) pro

poses a causally-principled solution to avoid false-positive connections 
from conditioning on colliders. The strategy of combinedFC is based on 
the observation that for a collider X → Z ← Y, the pairwise correlation of 
the two causes X and Y will be zero; while the multiple regression 
X=aY+bZ (or Y=aX+bZ), where the common effect Z is being condi
tioned on, will infer a non-zero regression coefficient a between X and Y. 

CombinedFC leverages this observation to detect and remove false- 
positive connections from conditioning on colliders. In a first step, the 
method computes the multiple regression for each brain region on the 
rest of the regions in the dataset. In a second step, it checks for each non- 
zero multiple regression coefficient if its corresponding pairwise 
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correlation is zero. If this is the case, there is evidence of a false-positive 
connection from conditioning on a collider and combinedFC removes 
this connection from the network (Fig. 1D and Table 1). Using combi
nedFC we have more evidence to conclude that the inferred network 
does not include false-positive connections from unconditioned causal 
confounders or chains—thanks to the initial multiple regression fully 
conditioning—or false-positive connections from conditioning on colli
ders—thanks to the zero-correlation check. Nonetheless, Sanchez-Ro
mero & Cole (2021) have shown that in the presence of certain 
challenging causal patterns, for example a mix of a causal confounder 
and a collider (e.g., Fig. 1A and Table 1), combinedFC will inevitably 
produce false-positive connections (Fig. 1D and Table 1). It is the risk of 
these false-positives that limits combinedFC to unequivocally orient 
detected colliders. Thus, as correlation and multiple regression, com
binedFC returns an undirected network, albeit with less risk of 
false-positive connections. 

Here, we implement combinedFC with two modifications. In the first 
step of combinedFC, instead of using linear multiple regression to 
evaluate conditional associations, we used partial correlation using the 
inverse of the covariance matrix, which is a faster and equivalent way to 
determine significant connections. The second modification is consid
ering the output of combinedFC as an initial feature selection step 
(Guyon et al., 2008; Guyon and Elisseeff, 2003), and compute the final 
FC weights by regressing each region only on its connected regions 
(selected features) in the combinedFC network. We have seen that this 
second modification produces FC weights that result in more accurate 
activity flow predictions than the original weights of combinedFC. 

For every individual simulation and empirical dataset, we applied 
combinedFC with a two-sided z-test and significance threshold of p- 
value<α=0.01 for the partial correlation, and of p-value>α=0.01 for the 
zero-correlation check (following Sanchez-Romero & Cole (2021)). 
After the feature selection, we computed FC weights with linear multiple 
regression and no significance test. 

2.2.4. PC Algorithm 
The Peter-Clark (PC) algorithm (Spirtes et al., 2000; Spirtes and 

Glymour, 1991) provides a discovery strategy that overcomes the limi
tations of the three methods described above. It controls for 
false-positive connections created by casual chains, confounders and 
conditioned-on colliders, even in challenging causal patterns (Fig. 1E 
and Table 1). In addition, after undirected connections are estimated 
(adjacency discovery phase), the PC algorithm applies a series of 
orientation rules to infer, when possible, the causal direction of con
nections (orientation discovery phase). The outcome of the algorithm is 
a network of undirected and directed connections from which a set of 
equivalent (i.e., encode the same conditional independence information 
from the data) fully directed networks can be read out. The set of 
equivalent fully directed networks is built by listing all the possible 

combinations of orienting undirected connections (if any), as long as no 
new colliders are created. For example, in Fig. 1E the set of three 
equivalent fully directed networks is built by orienting the undirected 
connections X — Z — Y, as X ← Z → Y, X → Z → Y and X ← Z ← Y. 
Importantly, without additional information (e.g., from experimental 
causal interventions) we are not able to disambiguate which of the three 
is the true directed network (Eberhardt et al., 2005). (In the Bayes 
networks literature, this equivalence set is referred to as the Markov 
equivalence class (Verma and Pearl, 1992). 

We used an order-independent version of the PC adjacency discovery 
phase known as PC-stable (Colombo and Maathuis, 2014; termed 
FAS-stable in Sanchez-Romero et al., 2019), and include pseudocode in 
Box 1 (1). In short, PC starts with a fully connected undirected network 
and checks for every pair of brain regions if they are correlated or not. If 
two regions are not correlated, PC removes their adjacency from the 
network. Next, the algorithm checks for every pair of still connected 
regions if they are correlated conditioning on one other region. (This 
implies a conditional correlation with a conditioning set of size one. In 
the pseudocode, the size of the conditioning set S is referred to as depth 
(Box 1 (1).3).) If two regions are not conditionally correlated on one 
other region, PC removes their connection from the network. For every 
pair of still connected regions, PC keeps testing correlations condition
ing on two other regions (conditioning set of size two), three other re
gions and so forth, until no more connections can be removed from the 
network. Note that when PC evaluates conditional correlations, it does it 
iteratively through all possible combinations of conditioning sets of size 
one, two, three and so forth, until it finds, if any, a set S that makes the 
regions not conditionally correlated (Box 1 (1).3.b). 

The implementation we used of PC computes the conditional corre
lation for any two regions X and Y conditioning on a set S (Box 1 (1).3.b. 
i), using the inverse of the covariance matrix (precision matrix P) for X, 
Y and S, to obtain the conditional correlation coefficient rXY|S=− PXY/ 
sqrt(PXXPYY), where sqrt() is the square root function and PXY is the entry 
for X and Y in the precision matrix. To determine statistical significance, 
first the conditional correlation coefficient rXY|S is transformed to a 
Fisher z statistic ƶ=tanh− 1(rXY|S)sqrt(N− |S|− 3), where N is the number 
of datapoints and |S| is the size of the conditioning set (number of re
gions conditioned on); then, for a two-sided z-test, we compute the p- 
value=2(1− cdf(abs(ƶ))), where abs() is the absolute value and cdf() is 
the cumulative distribution function for a standard normal distribution. 
For a user-chosen α significance threshold, if p-value>α, then we 
conclude that regions X and Y are not correlated conditioning on the set 
of regions S. (In the PC algorithm this result implies removing the 
network connection between X and Y.) A significance threshold of 
α=0.01 was set for all applications of PC. 

It is important to note that we implement the PC algorithm with 
conditional correlations to estimate the required conditional associa
tions but other approaches can be used, such as conditional mutual in
formation, or other non-linear, non-Gaussian, conditional association 
measures (Ramsey, 2014; Zhang et al., 2011), depending on the prop
erties of the distributions and functional associations of the data under 
study. 

The second phase of our implementation of the PC algorithm applies 
two rules to orient, when possible, the adjacencies from the first phase. 
We include the orientation discovery phase rules in Box 1 (2). The first 
rule is based on causal principles about conditional independencies 
implied by collider structures and is part of the original implementation 
of PC (Spirtes and Glymour, 1991). The collider orientation rule states 
that if in a network, a region X is adjacent to a region Z, and Z is adjacent 
to a region Y, and X and Y are not adjacent (triple, X — Z — Y), if Z is not 
in the conditioning set that made X and Y not correlated, then neces
sarily these regions form a collider X → Z ← Y (Box 1 (2).1). If the 
opposite were true, and Z were in the conditioning set that made X and Y 
not correlated, then we would not be able to orient this triple, because 
the three other possibilities X → Z → Y, X ← Z ← Y or X ← Z → Y, equally 
imply that X is not correlated with Y conditioning on Z. In this particular 

Box 1 
PC algorithm pseudocode.  

(1) Adjacency discovery phase 
1. V ← set of regions in the input dataset 
2. Ŵ ← fully connected undirected network over V 
3. for all depth = 0, 1,…, until no more connections can be removed do 

a. for all X in V do //guarantees order independence 
i. adj(X) ← set of adjacent regions for X in Ŵ 

b. for all X, Y, S; X, Y in V, Y in adj(X), S a subset of adj(X)\{Y}, |S| = depth do 
i. if X is not correlated to Y conditioning on the set of regions S then 

1. remove connection X — Y in Ŵ 
4. return Ŵ 

(2) Orientation discovery phase 
1. for all X — Z — Y, and X and Y not connected in Ŵ do //collider orientation 

a. if Z is not in the conditioning set that made X and Y not correlated then 
i. orient X → Z ← Y 

2. for all X → Z — Y, and X and Y not directly connected do //Meek’s rule 
a. orient Z → Y 

3. return Ŵ  
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case, only collider structures produce unambiguous conditional corre
lations that can be used to orient adjacencies (see Fig. 1E for an 
example). 

In practice, when the fMRI time series have a small number of 
datapoints, some conditional correlation estimates may be inaccurate 
and we could end up incorrectly orienting colliders. To minimize this 
risk, Ramsey (2016) implemented the collider orientation rule with the 
max p-value heuristic. The heuristic consists in computing the p-values 
of the correlations of regions X and Y conditioning on every possible 
subset of regions adjacent to X. Then, choosing the conditioning subset 
corresponding to the maximum p-value, and if region Z is not in this 
subset, orienting the triple as a collider X → Z ← Y. By choosing the 
conditioning subset with the maximum p-value we try to guarantee that 
from all the possible subsets, we select the one that optimally assures 
that X and Y are conditionally not correlated. 

Importantly, Ramsey (2016) also showed that with inaccurate con
ditional correlation estimates due to small number of datapoints, we 
may end up orienting two conflicting colliders in the network. For 
example, for two triples we could conclude X → Z ← Y and Z → Y ← D, 
which implies a conflicting orientation for Z and Y. The problem is 
deciding which collider orientation we should remove. Ramsey (2016), 
following the same ideas of the max p-value heuristic, suggests sorting 
all the previously inferred colliders from high to low according to its 
p-value—from the max p-value heuristic—and remove a collider orien
tation if it conflicts with any higher p-value collider. Ramsey (2016) 
showed in simulations the improvement in orientation accuracy from 
these two heuristics, so in our implementation of PC we used the collider 
orientation rule with the max p-value heuristic followed by the collider 
conflict resolution heuristic. 

Meek (1995) introduced a set of orientation rules that in some cases 
can complement the collider orientations. This second orientation rule 
(Box 1 (2).2) is based on the assumption that the collider orientation 
rule properly detected all existing colliders in the network, such that no 
new colliders are allowed. Thus, for X → Z — Y we can orient Z → Y, 
since the opposite direction Z ← Y will create a new collider, and that is 
not allowed. The rest of Meek’s rules leverage the assumption that the 
underlying causal network does not contain cycles, and thus orient ad
jacencies avoiding the formation of cycles. Since we know the brain 
contains feedforward and feedback structures supporting communica
tion between regions, the assumption of no cycles is incorrect in this 
case. For this reason, we did not implement those orientation rules and 
instead retained undirected connections that may suggest the presence 
of cycles. For mechanistic interpretations of actflow models, we consider 
it more problematic to orient a connection in the incorrect causal di
rection than to provide no orientation at all. 

The output of the PC algorithm is an unweighted network Ŵ from 
which connection weights can be estimated. Using Ŵ as a starting point 
we derived two different FC approaches. In the first, for each region X, 
we get Pa(X) the set of causal sources (parents) of X in network Ŵ, and 
solve the linear regression X=βPa(X)Pa(X). The elements of the estimated 
vector of regression coefficients βPa(X) are considered the weights for the 
source connections into X. For example, in X → Z ← Y, Z=βPa(Z)Pa 
(Z)=βXZX+βYZY, such that the estimate for βXZ is the weight for the 
directed connection X → Z, and equivalently for βYZ. Doing this for every 
region outputs a FC network, where each directed connection X → Y 
represents a causal hypothesis, in the sense that, keeping all other re
gions fixed, a change of one unit in X will cause an expected change of 
βXY in Y (Pearl, 2000; Spirtes et al., 2000; Woodward, 2005). In our 
biologically-constraint mechanistic actflow model, using a directed FC 
network implies predicting task-related activity for a held-out target 
region using only its putative causal sources (Fig. 1E). Hereafter we refer 
to this FC method simply as the PC algorithm or PC. 

As mentioned above, the network output by PC encodes a set of 
equivalent fully directed networks. In practice, as we increase the 
number of neural regions analyzed, the size of this set grows exponen
tially (He et al., 2015), making it too expensive (or infeasible) to 

evaluate all possible equivalent networks across simulations and 
empirical data. In this first FC approach, to reduce the computational 
cost we will only consider the original directed connections of the PC 
output network and not all the possible oriented connections included in 
the equivalence set. Thus, we simply remove undirected edges from the 
graphs resulting from the PC algorithm. 

Our second FC approach is motivated by (1) the assumption that 
accurately predicting the activation of a held-out target region can 
improve by using information from both its true direct causal sources 
and its true direct causal effects (a subset of its Markov blanket) (Aliferis 
et al., 2010; Fu and Desmarais, 2010), and (2) an interest in comparing 
the PC adjacency network to the networks inferred by the other undi
rected FC methods tested here. In this second approach, for each region 
X, we get adj(X), the set of adjacent regions for X in network Ŵ, and 
solve the linear regression X=βadj(X)adj(X). The elements of the esti
mated vector of regression coefficients βadj(X) are considered the con
nectivity weights for the adjacencies of X. For example, in X → Y → Z, 
Y=βadj(Y)adj(Y)=βYXX+βYZZ. Essentially, we are computing the FC 
weights using every adjacent region, which may include, depending on 
the inferred causal pattern, only direct causal sources, only direct causal 
effects or a combination of both—as in the example. These FC weights 
disregard the orientation of the connections and thus no longer have as 
straightforward a mechanistic interpretation as in the above PC method. 
Hereafter we refer to this FC method as PC-adjacencies or PCadj. 

Our implementation of the PC algorithm (with the removal of certain 
Meek orientation rules as described above) is available at https://gith 
ub.com/ColeLab/DirectedActflow_release, and it is a Python wrapper 
of the PC algorithm from the Java open-source Tetrad software version 
6.7.1 (available at https://github.com/cmu-phil/tetrad). 

2.3. Simulated causal networks and data 

As described above, activity flow analysis requires FC estimates from 
resting-state data and task-evoked activations from task-state data. Our 
general simulation strategy consisted in first creating a synthetic 
ground-truth causal network (directed graph), parameterizing and 
instantiating functional interactions to create a resting-state network 
and associated dataset, and then simulating a task-state network by 
introducing small random modifications to the original resting-state 
network coefficients (to simulate observed task-related deviations 
from resting-state connectivity (Cole et al., 2021; Ito et al., 2020), plus 
an exogenous task input variable feeding into the network to produce a 
task-state dataset. 

Simulation of resting-state networks and data closely follows San
chez-Romero & Cole (2021). Ground-truth resting-state networks were 
based on a directed random graphical model that has a preference for 
common causes and causal chains than for colliders, and includes 
two-node and three-node cycles. All networks were simulated with 200 
nodes and an average connectivity density of 5% (percentage of con
nections out of total possible). The network connectivity coefficients 
were instantiated by sampling from a uniform distribution in the in
terval [0.1, 0.4), and randomly setting 10% of the coefficients to its 
negative value. (This proportion was chosen to approximate the pro
portion of negative functional connections (15%) observed in the 
empirical fMRI analysis of Sanchez-Romero & Cole (2021). To generate 
resting-state data we used a general causal linear model X=WX+E, 
where X is a dataset of nodes (nodes × datapoints), W a directed network 
encoded as a matrix of connectivity coefficients (nodes × nodes), with 
direction going from column to row, and E a set of independent noise 
terms (intrinsic activity) (nodes × datapoints). We simulated 1000 
datapoints for resting-state data X by solving this model for X=(I-W)− 1E, 
where I is the identity matrix (nodes × nodes), W the simulated 
resting-state network, and pseudo-empirical datapoints for E (San
chez-Romero and Cole, 2021) were instantiated by randomizing pre
processed fMRI resting-state data across datapoints, regions and 
participants, from the Human Connectome Project (HCP). Using 
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pseudo-empirical terms E allowed us to simulate resting-state data X that 
better capture some of the distributional properties of our empirical 
fMRI. 

To create a task-state networks WT whose connectivity coefficients 
reflect deviations from rest, we took the previously simulated resting- 
state network W and defined each task-state coefficient, with equal 
probability, as: (a) one standard deviation above the corresponding 
resting-state coefficient, or (b) one standard deviation below, or (c) 
equal to the resting-state coefficient. (The standard deviation value 
corresponds to that of the positive connectivity coefficients in resting- 
state network W.) To generate task-state data we first defined one 
exogenous task input continuous variable T (simulating one task con
dition) with pseudo-empirical randomized BOLD datapoints from the 
HCP dataset (defined as above) (1 × datapoints). Then, we defined a task 
connectivity vector C (nodes × 1), that specifies the network nodes 
directly affected by the task variable T. We randomly chose 10% of nodes 
to be directly affected by T, and sampled task connectivity coefficients 
from a uniform distribution in the interval [0.1, 0.4). (Note that other 
nodes can also be affected by T but through indirect causal paths.) 
Expanding the causal linear model to include the task-related elements, 
we now have XT=WTXT+CT+ET. We simulated 1000 datapoints for task- 
state dataset XT by solving the model for XT=(I-WT) − 1(CT+ET). As with 
the resting-state data we used pseudo-empirical datapoints for ET. 

Finally, simulated task-evoked activations were estimated individu
ally for each node XT by a standard fMRI general linear model. In other 
words, a linear regression of the form XT=aT, where the estimated co
efficient a represents the task-evoked activation, and reflects direct and 
indirect causal effects of the task variable T on the node XT. 

200 instantiations of the simulated models were generated to 
compare (1) the accuracy of the different FC methods to recover resting- 
state networks, and (2) the prediction accuracy of the activity flow 
models parameterized with these networks. Analyses were run in the 
Rutgers-Newark high-performance computing cluster AmarelN (htt 
ps://oarc.rutgers.edu/resources/amarel), using one node, 2 cores, and 
64G RAM. 

2.4. Empirical fMRI data 

Resting and task-state empirical fMRI data were used to compare the 
accuracy of activity flow predictions under the five different FC methods 
tested here. We used open access fMRI resting and task-state data from a 
subset of 176 participants from the minimally-preprocessed HCP 1200 
release (Glasser et al., 2013; Ugurbil et al., 2013; Van Essen et al., 2013). 
All subjects gave signed informed consent in accordance with the pro
tocol approved by the Washington University institutional review board. 
We abide by the HCP open access use terms and the Rutgers University 
institutional review board approved use of these data. These participants 
were selected by passing the following exclusion criteria as described in 
Ito et al. (2020): anatomical anomalies found in T1w or T2w scans; 
segmentation or surface errors as output from the HCP structural pipe
line; data collected during periods of head coil problems; data in which 
some of the FIX-ICA components were manually reclassified; partici
pants that had any fMRI run in which more than 50% of TRs had greater 
than 0.25 mm motion framewise displacement; removal according to 
family relations (only unrelated participants were selected, and those 
with no genotype testing were excluded). This resulted in 352 partici
pants, from which only the first half of participants (176) were included 
for computational tractability of our analyses. We include here a brief 
description of the data fMRI collection parameters: whole-brain echo-
planar functional imaging acquisitions were acquired with a 32 channel 
head coil on a modified 3T Siemens Skyra MRI with TR=720 ms, 
TE=33.1 ms, flip angle=52◦, BW=2290 Hz/Px, in-plane FOV=208 ×
180 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceler
ation factor of 8. For our analysis, we only used one 14.4 min run of 
resting-state data (1200 datapoints), and two 30 min consecutive runs 
(60 min total) of task-state data (7 tasks with 24 conditions). Further 

task and resting-state data acquisition details can be found elsewhere 
(Barch et al., 2013; Smith et al., 2013). 

In brief, the seven tasks consisted of an emotion cognition task 
(valence judgment, 2 conditions); gambling reward task (card guessing, 
2 conditions); language processing task (2 conditions); motor task 
(tongue, finger, toe, 6 conditions); relational reasoning task (2 condi
tions); social interaction cognition task (2 conditions); and working 
memory task (0-back, 2-back, 8 conditions). Details about these task 
paradigms can be found in Barch et al. (2013). 

The minimally-preprocessed HCP surface data (Glasser et al., 2013) 
were first parcellated into 360 cortical regions using the Glasser et al. 
(2016) atlas. Then, we applied the preprocessing steps detailed in Ito 
et al. (2020). Briefly, they include removing the first five datapoints of 
each run, demeaning and detrending the time series, and nuisance 
regression—based on Ciric et al. (2017)—with 64 parameters to control 
for the effects of motion and physiological artifacts, and their derivatives 
and quadratics. Global signal regression was not applied since its 
physiological basis and effects on functional connectivity inferences are 
still not fully understood (Aquino et al., 2020; Colenbier et al., 2020; Li 
et al., 2019; Liu et al., 2017; Murphy and Fox, 2017). 

Task-evoked activations for each of the 360 regions and 24 condi
tions were estimated using a standard general linear model at the region 
level. The SPM software canonical hemodynamic response function (fil. 
ion.ucl.ac.uk/spm) was used for general linear model estimation given 
that all tasks involved block designs (Cole et al., 2021). 

Analyses were run in the AmarelN cluster with the same specifica
tions mentioned above. Data and code to reproduce our synthetic and 
empirical analyses are available at the project repository (https://gith 
ub.com/ColeLab/DirectedActflow_release). 

3. Results 

3.1. Network recovery on simulated fMRI data 

We began by simulating ground-truth functional causal networks to 
determine the accuracy of the different FC methods tested (Fig. 1). A 
series of 200 random networks, each with 200 nodes, were simulated 
from a graphical causal model with more common causes and causal 
chains than colliders, and two-node and three-node cycles. Connectivity 
weights were sampled from a uniform distribution. For each causal 
network, we simulated fMRI time series with 1000 datapoints using a 
linear model. The accuracy of the FC methods was assessed in terms of 
how well they recovered ground-truth resting-state networks. We used 
precision and recall as measures of recovery accuracy. 

We first report in Fig. 2A-C, precision and recall for the recovery of 
the true network adjacency pattern in simulated data, for each of the FC 
methods tested. Precision is defined as the number of true-positive ad
jacencies (tp) divided by the sum of the number of true-positive and 
false-positive adjacencies (fp) (precision=tp/(tp+fp)). Precision values 
range from 0 to 1, and quantify the ability of each FC method to avert 
false-positive connections. A precision of 1 indicates that the method did 
not output any false positives, and a precision of 0 that it only output 
false-positive connections. Recall is defined as the number of true- 
positive adjacencies divided by the sum of the number of true-positive 
and false-negative adjacencies (fn) (recall=tp/(tp+fn)). Recall values 
also range from 0 to 1, and reflect the ability of each FC method to 
recover true connections. A recall of 1 indicates that the method inferred 
all the true connections, and a recall of 0 that it did not recover any of 
the true connections. Together, precision and recall yield a comple
mentary view of each method’s capacity to recover the true network 
while avoiding false-positive connections. Results are reported in box
plots indicating median, and lower and upper quartiles for 200 simu
lated resting-state networks. 

The preference to focus on reducing false-positive results (maxi
mizing precision) or on reducing false-negative results (maximizing 
recall) critically depends on the research question being pursued. Here, 
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we are mainly interested in measuring the performance of different FC 
methods in reducing the effect of deleterious spurious pathways and the 
subsequent impact on actflow predictions. With the primary goal of 
reducing the risk of false positive causal inferences, we sought to 
maximize precision first (reduce false-positive connections), followed by 
maximizing recall (reducing false negatives). Thus, the FC method with 
the highest precision would be preferred even with a moderately lower 
recall. Considering future practical applications involving prediction of 
causal interventions (e.g., brain stimulation effects), we are primarily 
interested in determining whether an effect would occur when it is 
predicted. This led us to prioritize avoiding cases where a false positive 
indicates a causal effect would occur when in fact it would not once an 
intervention is applied (e.g., in a randomized controlled trial). While this 
led us to avoid false positives over false negatives, it will be important 
for future work to also reduce false negatives, given the potential for 
interventions to have undesirable side effects that are predicted only in 
the absence of false negatives. 

As stated above, we recognize that for some research questions it 
may be more important to minimize false negatives than false positives. 
For these cases we suggest two practical alternatives. The first one is to 
increase the α threshold of the PC algorithm, which may result in a larger 
number of connections thus increasing the recall (reduction of false- 
negative connections) at the cost of losing precision (increase of false- 
positive connections). The second alternative is to use combinedFC, 
which in simulations showed better recall but lower precision than the 
PC algorithm (F. 2B-C). In both alternatives, researchers should consider 
how the reduction in false negatives may improve the mechanistic 
interpretation of their models (for example, by including a more com
plete description of the true source connections of a target region), but 
also the cost of increasing false positive inferences (for example, the 
higher risk of a failed intervention informed by false-positive 

connections). 
Considering the theoretical properties of each FC method to avoid 

false-positive connections from confounders, chains and conditioned-on 
colliders, we expect the PC algorithm to achieve the highest precision 
(less false-positive connections) for network recovery, followed by 
combinedFC, multiple regression and correlation, in that order. 
Regarding recall, it is not clear which of the FC methods is expected to 
recover the highest number of true connections. 

Fig. 2B shows that, as expected, PCadj and PC dominated over the 
rest of the methods with a median precision of 0.91, indicating that 91% 
of its inferred adjacencies are true-positive connections and 9% are false- 
positive connections. Note that PCadj and PC have the exact same pre
cision since PCadj is PC without the orientation information, and here 
precision is calculated only for adjacencies. CombinedFC and multiple 
regression were next, with precisions of 0.64 and 0.56, respectively. The 
lowest scoring method was correlation, with a precision of 0.07, 
implying that 7% of its inferred adjacencies are true positives and 93% 
are false positives. 

Fig. 2C shows that the results for recall go in the opposite direction. 
Correlation had the highest median recall, 0.89, indicating that 89% of 
the total true connections were recovered. Multiple regression and 
combinedFC follow closely with 85% and 77%, respectively, while 
PCadj and PC had the lowest recall, with 45% of the true connections 
recovered. 

From these methods, only the PC algorithm has inference rules to 
orient connections (Box 1 (2)). To measure the orientation accuracy of 
PC, meaning if the causal direction of an adjacency was correctly 
inferred, we computed the proportion of correct orientations out of the 
total number of correctly inferred adjacencies (true-positive adja
cencies). Notably, PC showed a median orientation accuracy of 0.83 
across the 200 simulations, implying that 83% of the true-positive 

Fig. 2. Recovery of functional connectivity networks and accuracy of activity flow prediction of task-evoked activations for simulated fMRI data. Boxplots show median, and 
lower and upper quartiles for 200 simulations. Correlation (corr), multiple regression (mulReg), combinedFC (combFC), PC-adjacencies (PCadj) and PC algorithm 
(PC). (A) Precision and recall formulas to measure goodness of network adjacency recovery. (B) Precision. (C) Recall. (D) Accuracy of actflow prediction of task- 
evoked activations, measured with Pearson correlation coefficient r and averaged across 200 regions. (E) Number of predictor regions averaged across 200 re
gions, plotted on a logarithmic scale for visualization, with actual median values next to each boxplot. For reference, the median in-degree (number of direct causal 
sources) in the true networks is 6.62. (F) Running time in seconds. 
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adjacencies inferred were oriented in its correct causal direction. 
These first results confirm that FC methods that make use of more 

conditional independence information and causal principles, such as 
combinedFC and PC, can recover with higher precision (lower number 
of false-positive connections) simulated resting-state fMRI networks. 
This suggests that these FC methods will result in activity flow models 
with better prediction accuracy, since the prediction of the task-evoked 
activations will not contain effects from spurious pathways. 

3.2. Actflow prediction accuracy on fMRI synthetic networks 

We extended our ground-truth models to determine if FC methods 
that better control the effect of false-positive connections, lead to more 
accurate predictions of task-evoked activity. Task-state networks were 
simulated by taking the previous 200 resting-state simulated networks 
and applying minor deviations to the original connectivity weights. For 
each iteration, the task was modeled as an exogenous source node, 
randomly connected to a number of network nodes. Task fMRI time 
series with 1000 datapoints were simulated for each network. We 
regressed each task-state network node on the exogenous task and 
considered the regression coefficients as the to-be-predicted (actual) 
task-evoked activations. 

In Fig. 2D we report the prediction accuracy of the actflow models 
for each of the FC methods tested. Following Cole et al. (2016), we 
measured prediction accuracy with the Pearson correlation coefficient r 
between the vector of predicted activations for the 200 simulated re
gions and the vector of actual activations. Measured in this way, the 
prediction accuracy r summarizes the actflow model performance across 
the whole network. Boxplots show median, and lower and upper quar
tiles for 200 simulations. 

Previous fMRI empirical results (Cole et al., 2016) showed that 
functional networks estimated with multiple regression produced more 
accurate actflow predictions compared to networks estimated with 
correlation. In addition, our simulation results (Fig. 2A and B) show that 
multiple regression-based networks have a higher number of false neg
atives (lower recall) but a lower number of false positives (higher pre
cision) than correlation-based networks. Together, these observations 
suggest that actflow prediction accuracy may be more improved by 
reducing false-positive functional connections than by reducing 
false-negative connections. Thus, we expect that PCadj and PC—the 
methods with the best network recovery precision—will have the higher 
prediction accuracy, followed by combinedFC, multiple regression and 
correlation, in that order. 

CombinedFC had the best median prediction accuracy of all the 
methods (r=0.90), probably due to a good balance for inferring real 
pathways and avoiding spurious pathways. It was followed closely by 
PCadj (r=0.87) and multiple regression (r=0.87). PC had a lower pre
diction accuracy compared to these methods (r=0.72). Note that when 
the actflow model is parameterized with the PC-based oriented network, 
it only uses the estimated direct sources to predict the activity of each 
held-out region (biologically-constrained mechanistic actflow). In 
contrast, when actflow uses unoriented networks, derived from multiple 
regression, PCadj or combinedFC for example, it considers all the 
adjacent regions of a held-out region to predict its activity. In causal 
terms, this implies that with unoriented networks, the held-out region 
activity prediction leverages information from both direct sources and 
direct effects, achieving a better prediction than when only source in
formation is used. It is for this reason that the PC prediction accuracy 
was lower than PCadj, multiple regression and combinedFC prediction 
accuracies. Critically, the higher network recovery precision for the PC- 
based models (Fig. 2B) means that (despite having lower prediction 
accuracy) they provide increasing mechanistic interpretability of the 
actflow-generated activity predictions. 

As expected, actflow models based on correlation networks showed 
the lowest accuracy of all (r=0.66). Despite the low number of false 
negatives (high recall), these models have a high number of false- 

positive connections (low precision), which create spurious pathways 
through which task activity is incorrectly accounted for. 

Note that a vector of predictions and a vector of actual activations 
can have a high Pearson r, even if their values are in a completely 
different scale (e.g., all values multiplied by 2). If we are interested in 
assessing the deviation from the actual values, we can use the coefficient 
of determination R2=1− (Σi(Ai− Âi)2/Σi(Ai− Ā)2), where Ai are the actual 
activations, Âi the predicted activations, and Ā the mean of the actual 
activations. R2 measures the proportion of the variance of the actual 
activations that is explained by the prediction model. It ranges from 1 
(perfect prediction) to minus infinity (prediction deviations can be 
arbitrarily large), with a value of zero when the predictions are equal to 
the mean of the actual activations (Âi=Ā). For our simulations, the 
median actflow prediction R2 for the FC methods followed the same 
ordering as the Pearson r: combinedFC (R2=0.80), PCadj (R2=0.74), 
multiple regression (R2=0.68), PC (R2=0.52) and correlation 
(R2=− 164.68). The high negative R2 of correlation-based models in
dicates that predicted values strongly deviate from actual activation 
values, confirming the detrimental effect of spurious network pathways 
on the actflow prediction model. 

We evaluated the complexity of actflow models with the number of 
regions used to predict the task-evoked activation of held-out regions. In 
practice, as the complexity of a model increases, its interpretability 
decreases, making it more difficult to parse out the network processes 
underlying the generation of task-related activations. Fig. 2E shows the 
number of predictors for each held-out region, averaged across the 200 
regions. Notably, actflow models based on PC directed networks ach
ieved high accuracy (Fig. 2D), with the lowest model complexity (me
dian of 3 predictors, since only directed sources were used to predict 
activations). These results evidence that PC can successfully recover 
functional directed connections that have high predictive power. This is 
further confirmed with the results of PCadj-based actflow models, which 
also had a relatively low number of predictors (median of 5), and an 
accuracy as high as combinedFC and multiple regression, both with an 
order of magnitude more predictors (median of 13 and 16, respectively). 
Correlation-based actflow models reported the highest complexity 
(median of 125 predictors) and the lowest accuracy to predict task- 
evoked activations. 

Finally, Fig. 2F shows that all FC methods have efficient running 
times which do not exceed the tens of seconds. The PC algorithm had the 
longest median running time (7 s), which is very efficient considering 
the large number of conditional associations it has to compute due to the 
number of regions and the complexity of the connectivity patterns in the 
true networks. Surprisingly, multiple regression had a relatively long 
median running time (4 s). Analysis of our code revealed that this un
expected running time was caused by the significance test for the mul
tiple regression coefficients. Not computing the significance test 
considerably reduces the running time. Running times depend on the 
hardware used for the analysis, but we expect that the reported ordering 
of the methods will replicate in any machine. 

Our results on simulated fMRI data show that PC and combinedFC 
can be used to build activity flow models with high prediction accuracy, 
low complexity (number of predictors) and efficient running times. 
Thanks to their use of statistical conditional independence information 
and causal principles to control for the effects of confounders, causal 
chains and conditioned-on colliders, and if orientation rules are pro
vided, such as with PC, these methods can provide plausible mechanistic 
hypotheses regarding the generation of task-evoked activations. 

3.3. Actflow prediction accuracy on fMRI empirical networks 

Our theoretical considerations about the continuum of FC methods 
(Fig. 1) and the comparative performance observed in simulations, 
prompted us to hypothesize that this performance will translate, up to a 
degree, to an empirical domain. Here, we used fMRI data to assess the 
performance of actflow predictive models under a complex empirical 
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setup—for which the ground-truth networks are not known—compris
ing 360 cortical regions, 24 task conditions across various cognitive 
domains and 176 different participants. We compared the average pre
diction accuracy of the different FC methods across all conditions. 

Prediction accuracy was measured as the Pearson correlation coef
ficient r between the vector of predicted activations for all 360 cortical 
regions of Glasser et al. (2016) and the vector of actual activations. We 
computed the prediction accuracy individually for each of the 24 HCP 
task conditions and reported the average across conditions. Measured in 
this way, the prediction accuracy r summarizes the actflow model per
formance across the whole brain and the full set of task conditions. 
Fig. 3A reports actflow prediction accuracy boxplots with median, and 
lower and upper quartiles across the 176 participants, for each FC 
method. PCadj attained the highest median prediction accuracy 
(r=0.82), followed by combinedFC (r=0.77) and PC (r=0.74). Multiple 

regression (r=0.60) and correlation (r=0.57) showed lower accuracies. 
As in the simulation results, we include median coefficient of determi
nation R2 as a complementary measure of prediction accuracy: PCadj 
(R2=0.67), combinedFC (R2=0.59), PC (R2=0.53), multiple regression 
(R2=0.33) and correlation (R2=− 710). As remarked in the simulation 
results, the high negative R2 of the correlation-based models reflects 
large differences between the predicted and the actual activation values, 
which are likely the result of spurious network pathways. As we hy
pothesized, these empirical results are consistent with the simulations, 
in the sense that actflow models parameterized with FC methods that use 
more statistical conditional independence information and causal prin
ciples, such as PC and combinedFC, can better predict task-evoked 
activity. 

The complexity of the actflow models (measured as the number of 
predictors) (Fig. 3B) followed the same order observed in simulations. 

Fig. 3. Accuracy of activity flow prediction of task-evoked activations based on functional connectivity networks estimated from empirical fMRI data. Correlation (corr), 
multiple regression (mulReg), combinedFC (combFC), PC-adjacencies (PCadj) and PC algorithm (PC). Boxplots show median, and lower and upper quartiles for the 
176 participants. (A) Prediction accuracy for activity flow models parameterized with each of the FC methods tested. Accuracy was measured as the Pearson cor
relation coefficient r between the vector of predicted activations for all 360 cortical regions of Glasser et al. (2016) and the vector of actual activations, averaged 
across the 24 HCP task conditions. (B) Number of predictor regions averaged across 360 regions, plotted on a logarithmic scale for better visualization, with actual 
values next to each boxplot. (C) Running time in seconds for network estimation. (D) Correlation-based functional connectivity (FC) network, averaged across 176 
participants. The 360 cortical regions were organized in 12 functional networks from Ji et al. (2019). FC average network for (E) multiple regression, (F) combi
nedFC, (G) PC-adjacencies and (H) PC algorithm. (I) Cortical surface map of the 12 functional networks partition used in panels D-H (available at https://github. 
com/ColeLab/ColeAnticevicNetPartition). For visualization, in all FC networks (panels D-H), values between -/+ 0.005 were set to zero. 
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PC had the lowest model complexity (median of 3 predictor source re
gions), followed by PCadj (median of 6), combinedFC (median of 8), 
multiple regression (median of 10) and correlation (median of 253). 
These results also reflect the different connectivity densities of the 
estimated FC networks. Correlation produced highly dense networks 
(Fig. 3D), resulting in actflow models with high complexity (large 
number of predictors) but low prediction accuracy (Fig. 3A), whereas PC 
inferred sparser networks (Fig. 3G-H), that produced actflow models 
with lower complexity and high prediction accuracy. 

To confirm that the good performance of sparser PCadj-based actflow 
models comes from the appropriate control of confounders, causal 
chains and condition-on colliders, and not just from their sparser 
inferred networks, we report actflow prediction accuracy across undi
rected FC methods after matching their connectivity density (and me
dian number of predictors) to that of PCadj networks. To do this, we 
thresholded networks by selecting the connections with the strongest 
absolute value until the PCadj density was matched. As above, we use 
median Pearson correlation and coefficient of determination to measure 
accuracy, and compare these values against the previously observed 
accuracies from Fig. 3. We observed a significant reduction in accuracy 
for correlation (r=0.48 vs. 0.57) (but increase in R2=− 33 vs. − 710, 
probably due to a reduction in predicted activation values); a significant 
reduction for multiple regression (r=0.53 vs. 0.60, R2=0.23 vs. 0.33); 
and no significant change for combinedFC (r=0.77 vs. 0.77, R2=0.59 vs. 
0.59) (p<0.0001 for all significant differences, for a two-sample t-test 
one-sided, n=176). All of these methods retained lower prediction ac
curacy than PCadj (r=0.82, R2=0.67), despite matching PCadj network 
density. These results confirm that PCadj-based actflow models’ per
formance comes from the effective leverage of statistical conditional 
independence information and causal principles, and cannot be repli
cated in the other methods by forcing network sparsity via an arbitrary 
connection-strength-based thresholding approach. 

Lastly, Fig. 3C reports running times for the inference of FC networks 
from empirical fMRI time series. We observed efficient running times 
not exceeding tens of seconds. For these data, multiple regression 
showed the longest median running time (44 s), followed by PC (33 s). 
As mentioned above, the relatively long running time of multiple 
regression comes mainly from the computation of the significance test 
for the regression coefficients. 

Together, these results confirm empirically that methods using sta
tistical conditional independence information and causal principles can 
estimate undirected and directed FC networks useful to build activity 
flow models with low complexity and high prediction accuracy. Actflow 
models using undirected FC networks can provide excellent predictions 
(e.g., combinedFC and PCadj), but cannot tell if the task activity is 
flowing into, from, or into and from (as in a feedback) the held-out re
gion. In contrast, PC-based directed networks, despite reduction in the 
prediction accuracy, provide biologically-constrained mechanistic 
models in which the flow of task activity can be traced from source re
gions directly into target regions. 

3.4. Actflow predictions across brain regions and task conditions 

Our results so far have confirmed in simulations and empirically 
(Fig. 3A) the benefits in prediction and mechanistic interpretation from 
FC methods that incorporate statistical conditional independence in
formation and causal principles. Notably, we showed that directed FC 
networks from the PC algorithm can be used to build directed actflow 
models (Fig. 1H) with high prediction accuracy, low complexity and 
tractable mechanistic interpretation. To further illustrate the benefits of 
PC-based directed actflow models, we compare their performance 
against the field-standard Pearson correlation FC, the method at the 
extreme of our continuum, only based on statistical pairwise associa
tions. This analysis is essentially focused on measuring the accuracy in 
predicting a whole-brain pattern of regional activations for each task 
condition (node-wise accuracy) (Cole et al., 2021). 

The actflow accuracies reported in Fig. 3A summarize on the Pearson 
r, general information from all 360 cortical regions and 24 task condi
tions. Here, we unpacked this information by showing in matrix form the 
actual task activations for all regions (rows) and task conditions (col
umns), median across the 176 participants (Fig. 4B), flanked by the 
predicted activations of the field-standard Pearson correlation-based 
models (Fig. 4A) and by the predictions of the PC-based mechanistic 
actflow models (Fig. 4C). These matrices show with greater detail how 
PC-based predictions across regions and all conditions had a more 
similar pattern to the actual activations, relative to correlation-based 
predictions (r=0.74>r=0.57, median across participants). Importantly, 
we also observed that the PC-based predicted values were in approxi
mately the same range as the actual activations (compare colorbars in 
Fig. 4B and C), while correlation-based predicted activations were often 
hundreds of times off of the actual values (see Fig. 4A colorbar). As 
mentioned above, these deviations can be quantitatively assessed with 
the coefficient of determination, R2=0.53 vs. R2=− 710, for PC-based 
models and correlation-based models correspondingly. The high nega
tive R2 reflects the observed strong deviations in the correlation-based 
actflow predicted values. 

For each of the 24 task conditions taken individually, we confirmed 
that PC-based actflow models attained a significantly higher node-wise 
prediction accuracy than correlation-based models (for both Pearson r 
and R2, p<0.01 corrected for multiple comparisons with the nonpara
metric test of Nichols & Holmes (2002), for 176 participants). 

To further illustrate this result, we performed a more targeted 
analysis that focuses on one task condition (one column in the Fig. 4A-C 
matrices) and examines the pattern of actflow predicted activations 
across the 360 brain regions (node-wise accuracy). We first show this 
analysis for the motor task: left hand condition. The PC-based actflow 
models (Fig. 4F) recovered the whole-brain actual activation pattern 
(Fig. 4E) better than the correlation-based models (Fig. 4D) 
(r=0.64>r=0.47; and R2=0.40 vs. R2=− 353, median across partici
pants). More importantly, the PC-based models correctly recovered the 
functionally-relevant pattern of positive activations in the right hemi
sphere somatomotor network, known to be engaged during task-induced 
left hand movements. In contrast, correlation-based models predicted 
negative and inflated activation values across the entire cortex. 

We repeated the node-wise accuracy analysis, this time for the 
working memory task: 2-back: places condition. In this case, we also 
confirmed the superior performance of PC-based actflow models 
(Fig. 4I) compared to correlation-based models (Fig. 4G), both in the 
prediction of the whole-brain activation pattern and in the range of 
predicted values (r=0.78>r=0.57; and R2=0.59 vs. R2=− 481, median 
across participants). Note how the predictions of correlation-based 
models are massively biased towards positive and negative values 
(Fig. 4G, colorbar), reflecting again the presence of inferred spurious 
pathways through which task activity is incorrectly summed to the 
actflow computation. 

These results confirm that mechanistic actflow models based on FC 
methods, that control for indirect and spurious pathways, and provide 
causal source information, such as PC, better predict whole-brain acti
vation patterns and actual values, for each of the 24 task conditions 
tested here. In contrast, correlation-based FC produced densely con
nected actflow models in which every region’s connectivity profile 
probably conflated direct, indirect and spurious pathways (see Fig. 3D 
FC matrix) that incorrectly biased the actflow predicted activations. 

3.5. Region-wise activity flow prediction across task conditions 

The previous analysis compared the accuracy of PC- and correlation- 
based actflow models in predicting whole-brain activation patterns for 
individual task conditions (node-wise accuracy, e.g., Fig. 4F). Here, in 
contrast, we want to measure the accuracy of PC-based directed actflow 
models and correlation-based models for predicting activations across 
the 24 task conditions for each individual brain region (condition-wise 
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accuracy) (Cole et al., 2021). This analysis allows us to highlight brain 
areas for which the two methods differ significantly. 

We consider the matrices in Fig. 4A-C, choosing one row (region) and 
computing the Pearson r value between the vector of 24 column (con
ditions) actual activations and the vector of 24 column actflow- 
predicted activations. The prediction accuracy r value for each region 
is then projected to a brain map. Fig. 5A-B show the condition-wise 
accuracy of correlation-based and PC-based actflow models for each 

region (median across 176 participants). 
To highlight differences in prediction accuracy across the methods, 

Fig. 5C shows the PC-based condition-wise accuracy minus the 
correlation-based accuracy for each brain region. For 82% of the 360 
regions, PC-based actflow models attained a significantly higher 
condition-wise prediction accuracy than correlation-based models 
(Pearson r, p<0.01 corrected for multiple comparisons with the 
nonparametric test of Nichols & Holmes (2002), for 176 participants. 

Fig. 4. Activity flow prediction of task-evoked activations for empirical fMRI data, across cortical regions and task conditions. (A) Actflow predicted activations based on 
correlation FC, for 360 regions organized in 12 networks (rows) (Glasser et al., 2016; Ji et al., 2019), and 24 HCP task conditions (columns), median across 176 
participants. The median results from first computing the Pearson r (or coefficient of determination R2) prediction accuracy node-wise (360 regions) for each of the 
24 conditions, then averaging across conditions and finally obtaining the median across participants. (B) Actual task-evoked activations. (C) Actflow predicted 
activations based on PC algorithm FC. (D) Correlation-based actflow predictions for the motor task: left hand condition, projected into a brain surface map with 360 
Glasser regions, median across 176 participants. The prediction accuracy is the Pearson r (or coefficient of determination R2) between the vector of node-wise (360 
regions) predicted activations for this condition and the vector of actual activations, median across participants. (E) Actual activations for the motor task: left hand 
condition. (F) PC-based actflow predictions for the motor task: left hand condition, and median prediction accuracy. (G-I) Same results as panels D-F but for working 
memory task: 2-back: places condition. 
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Fig. 5. Condition-wise accuracy of activity flow predictions for 360 cortical regions. Condition-wise actflow accuracy is the prediction accuracy for each region across the 
24 task conditions of the HCP data. Brain surface maps show median across 176 participants. Colorbars indicate minimum, mean and maximum prediction accuracy 
(r) across the 360 Glasser regions. (A) Actflow condition-wise accuracies using the field-standard Pearson correlation FC. (B) PC algorithm-based actflow condition- 
wise accuracies. (C) PC algorithm-based minus correlation-based actflow condition-wise accuracies. Positive values indicate that PC algorithm-based actflow models 
predict better than correlation-based models, negative values indicate the opposite. 

Fig. 6. Directed activity flow models 
provide mechanistic insight into the gen
eration of n-back cognitive responses in 
DLPFC. (A) 2-back vs. 0-back actual 
activation contrast, for each of the 360 
Glasser cortical regions. (B) Correlation 
FC for one to-be-predicted region in the 
right hemisphere dorsolateral prefrontal 
cortex (green region, right DLPFC Area 
8C), averaged across 176 participants. 
(C) PC algorithm directed FC from pu
tative causal sources to the to-be- 
predicted right DLPFC Area 8C (green 
region). (D) Correlation-based activity 
flow estimates, resulting from multi
plying each region’s actual activation 
contrast (panel A) by its correlation 
functional connection (panel B), aver
aged across 176 participants. The 
region-wise sum of the activity flow 
estimates is the correlation-based act
flow contrast prediction for the right 
DLPFC Area 8C; average predicted 
value across 176 participants, 52.22, p- 
value=5.8e-4 for a two-sided t-test. (E) 
PC algorithm-based causal activity flow 
estimates, resulting from multiplying 
contrasts (panel A) by its PC directed 
functional connection (panel C). 
Average predicted value across 176 
participants, 5.50, p-value=3.5e-26 for 
a two-sided t-test. The actual activation 
contrast for the right DLPFC Area 8C is 
included for comparison, average across 
participants 8.3, p-value=4.8e-32 for a 
two-sided t-test.   
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99% of the 360 regions for R2). The brain map of Fig. 5C shows that 
accuracy differences are relatively larger in the language and somato
motor networks. This condition-wise result is consistent and comple
mentary to the previous node-wise accuracy analysis of the motor and 
working memory tasks (Fig. 4D-I). 

These results extend our previous observations by confirming that 
PC-based directed actflow models (with lower complexity and valid 
mechanistic interpretation) can better predict, for a large majority of 
cortical regions, the task-evoked activations across a diverse set of 
cognitive conditions. 

3.6. Demonstrating how directed activity flow models can improve 
mechanistic insight into the generation of cognitive functions: DLPFC 
working memory condition selectivity 

Results thus far demonstrate that parameterizing activity flow 
models with FC methods that effectively exploit conditional indepen
dence information and causal principles improves our ability to accu
rately simulate the generation of task-evoked activations. This was 
shown in previous sections via summaries of results across all 360 re
gions and 24 task conditions of our empirical dataset. Here, to illustrate 
how actflow models can be used in practice to advance mechanistic 
explanations of cognitive function, we focus on one particular brain 
region engaged in a single cognitive task manipulation. Specifically, we 
applied an actflow model to understand how the flow of activity from 
distal brain regions may give rise to an established cognitive activation 
effect (2-back vs. 0-back working memory task conditions) in one region 
of the right dorsolateral prefrontal cortex (DLPFC). We focused on a 
cognitive contrast given the enhanced causal experimental control 
inherent in such a contrast (controlling for, e.g., stimulus perception, 
task timing, general task engagement). To further illustrate the impact 
that the choice of FC method can have on actflow-based explanations, 
we again compare results for correlation-based (the field standard and 
where no conditional independence information or causal principles are 
used) and PC-based actflow models (where the largest amount of con
ditional independence information and causal principles are used). 

First, activations for the 4 conditions for 2-back (body, face, place 
and tool stimuli) (see Fig. 4A-C) were averaged to form one 2-back 
activation for each of the 360 Glasser regions. The same procedure 
was applied for the 0-back conditions. Then, activation contrasts (2-back 
minus 0-back) were computed for each subject, and regions with higher 
2-back than 0-back activation on average across subjects were localized 
(Fig. 6A, red regions). 

Brodmann’s Area 8 in the posterior section of the DLPFC has been 
extensively reported to have an important role in the maintenance of 
stimulus information during working memory tasks (Carlson et al., 
1998; Constantinidis et al., 2001; Courtney et al., 1998; Petrides, 2000; 
Rowe et al., 2000; Rowe and Passingham, 2001; Wager and Smith, 
2003). In the Glasser et al. (2016) parcellation, DLPFC Area 8 is sub
divided into areas 8C, 8Av, 8Ad and 8BL, from which the right hemi
sphere Area 8C showed the highest positive activation in the 2-back vs. 
0-back contrast—both in the analysis conducted here and the one in 
Glasser et al. (2016). The right DLPFC Area 8C therefore has a prominent 
and established role in working memory function, and this motivated us 
to choose it as our to-be-predicted target (Fig. 6C, green region). 

We built an actflow model for right DLPFC Area 8C using the actual 
activation contrasts for the rest of the regions (Fig. 6A) and its estimated 
resting-state functional connections (Fig. 6B and C). We obtained a brain 
map of activity flow contrast estimates by multiplying each region’s 
actual activation contrast by its corresponding connection to the to-be- 
predicted target (Fig. 6D and E). Positive values indicate incoming 
contributions that would increase activity in right Area 8C, while 
negative values indicate incoming contributions that would decrease 
activity in this region. Finally, we summed the activity flow estimates to 
simulate the generation of the task-evoked activation contrast for the 
chosen DLPFC region. 

Correlation-based actflow models used, on average, a considerably 
high number of regions in the left and right hemispheres (Fig. 6B) to 
predict the activation contrast of the target right DLPFC Area 8C. These 
densely connected models predicted an activation contrast one order of 
magnitude larger than the actual contrast (52.22 vs. 8.3, average across 
176 participants) (Fig. 6D). In contrast, the PC algorithm inferred, on 
average, directed and sparser connectivity patterns for the DLPFC Area 
8C (Fig. 6C). These sparser patterns resulted in an actflow prediction 
closer to the actual contrast value (5.45 vs. 8.3, average across 176 
participants) (Fig. 6E). In line with these observations, the mean abso
lute error (MAE) for correlation-based actflow models was significantly 
larger than the MAE for PC-based models (p=7.4e-31 for a Wilcoxon 
signed-rank non-parametric test, n=176). 

In addition, we identified 18 regions distributed across the default 
mode network (3 regions) and the frontoparietal network (15 regions), 
whose group-average absolute-value (to consider positive and negative 
estimates) actflow estimates are at the 95th percentile of the distribu
tion, suggesting a relevant contribution of these afferent regions in the 
network-supported generation of working memory effects in Area 8C of 
the right DLPFC (Table 2). 

Activity flow models also allow us to quantify the percentage of 
inter-subject variance in task-related activity that network distributed 
afferent processes can explain. We quantify this for Area 8C of the right 
DLPFC, using the R2 between the PC-based actflow model predictions 
and the actual n-back-related contrasts across individuals. Data-driven 
causally-informed actflow models including distributed activity from 
regions in default mode and frontoparietal networks were able to 
explain 47% of variance across participants (R2=0.47, n=176). This 
value was much lower (R2=− 693.47) for correlation-based actflow 
models. This result supports the conclusion that a substantial portion of 
right DLPFC Area 8C activation variance can be explained in terms of 

Table 2 
Relevant contributing regions to the PC-based actflow DLPFC prediction. 18 regions 
(out of 360) with the strongest contributions (activity flow estimates) to predict 
right DLPFC Area 8C 2-back vs. 0-back working memory contrast. Group- 
average absolute-value activity flow estimates are at the 95th percentile of the 
distribution. Region name and location from Glasser et al. (2016), network 
assignment from Ji et al. (2019).  

Region Cortical location Network Activity Flow 
Estimate 

Area PFm Complex Inferior Parietal Frontoparietal 
(FPN) 

+1.682 

Area 8Av Dorsolateral Prefrontal Default Mode 
(DMN) 

+0.791 

Area 8BM Anterior Cingulate and 
Medial Prefrontal 

FPN +0.712 

Area posterior 
9–46v 

Dorsolateral Prefrontal FPN +0.567 

Area 8C Dorsolateral Prefrontal FPN +0.343 
Inferior 6–8 

Transitional Area 
Dorsolateral Prefrontal FPN +0.220 

Area anterior 47r Orbital and Polar 
Frontal 

FPN +0.135 

Area IFJp Inferior Frontal FPN +0.087 
Area posterior 10p Orbital and Polar 

Frontal 
FPN +0.086 

Area PGs Inferior Parietal DMN +0.083 
Area 44 Inferior Frontal FPN +0.083 
Area 9 Posterior Dorsolateral Prefrontal DMN +0.076 
Area IntraParietal 

1 
Inferior Parietal FPN +0.075 

Area IFSp Inferior Frontal FPN +0.068 
Anterior Ventral 

Insular Area 
Insular and Frontal 
Opercular 

FPN +0.060 

Superior 6–8 
Transitional Area 

Dorsolateral Prefrontal FPN +0.058 

Area anterior 
9–46v 

Dorsolateral Prefrontal FPN +0.051 

Area posterior 47r Inferior Frontal FPN +0.051  
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distributed network processes across the default mode and frontopar
ietal networks, and that PC-based connectivity estimates could be used 
to more accurately model that variance relative to standard correlation- 
based connectivity estimates. 

The information provided by the directed activity flow models of 
DLPFC during a working memory task (Fig. 6 and Table 2) can be further 
used to expand our mechanistic explanation of the distributed processes 
supporting working memory. For example, following Mill et al. (2022), 
and Hearne et al. (2021), we can use actflow with resting-state FC be
tween regions in Table 2 and DLPFC in a clinical population with 
working memory deficits to predict unhealthy task-evoked working 
memory activations. These predicted activations can be further used in a 
decoding model of behavior to explore the causal relations between FC 
changes and working memory deficits. Another possibility is to follow 
Ito et al. (2022), using resting-state FC patterns as a part of a multi-step 
empirical neural network model that starts in regions encoding working 
memory task stimuli, then follows to intermediate processing of 
task-relevant information (such as the one occurring between regions in 
Table 2 and DLPFC) and finishes in motor regions where the response 
demanded by the task is decoded, usually button presses. A third pos
sibility is to use non-invasive approaches such as transcranial electrical 
stimulation to alter the connectivity (Reinhart, 2017) between regions in 
Table 2 and DLPFC and measure the effect of FC alterations on the 
activation patterns and behavioral response during the working memory 
task. 

4. Discussion 

We used simulations and empirical fMRI to test the hypothesis that 
FC methods that use statistical conditional independence information 
and statistical causal principles, can accurately recover causal properties 
of functional brain networks that can then be used to construct activity 
flow models—empirically-constrained network simulations. These 
empirically-constrained simulations provide plausible distributed 
network accounts of the generation of cognitive brain activations. 
Importantly, we illustrated the explanatory potential of activity flow 
models with a PC-based actflow model of right DLPFC (Area 8C), which 
provides a unique distributed account of an established cognitive effect 
observed during increased working memory load (a statistically signif
icant 2-back vs. 0-back contrast) (Sreenivasan et al., 2014). 

Specifically, our actflow model-based analysis complements previ
ous studies characterizing the role of DLPFC in working memory (Cai 
et al., 2021; Finn et al., 2019; Mencarelli et al., 2019; Senkowski et al., 
2022) by revealing influences from default mode and frontoparietal 
networks that likely drive DLPFC’s involvement in n-back cognitive 
processes. Further, actflow models allowed us to estimate the degree to 
which distributed afferent processes—as opposed to recurrent 
within-region processes—play a role (47% of n-back contrast 
inter-subject variance explained) in right DLPFC 
working-memory-related activity. As previously mentioned, this 
single-step directed actflow model represents a starting point for a future 
more comprehensive multiple-step neurocognitive explanations of 
working memory (Christophel et al., 2017). Such an explanation would 
characterize the chain of effects from stimulus (e.g., n-back task stimuli) 
to network-based cognitive processes (e.g., neural activity changes from 
differences in working memory load) to behavior (e.g., motor response). 

While the particular methods used here are illustrative of the pro
posed mechanistic actflow paradigm for explaining neurocognitive ac
tivations, there are many opportunities for further improvements. The 
limitations of the current study can perhaps be best illustrated by con
trasting it with an idealized experiment not currently possible due to 
methodological limitations in neuroscience. Such an ideal study would 
observe all action potentials and local field potentials throughout the 
human brain in real time. This would contrast with the present study’s 
use of fMRI, which has limited spatial resolution (2.0 mm voxels) and 
temporal resolution (720 ms time points) but whole-brain coverage that 

matches the ideal. FMRI detects blood-oxygen level dependent changes 
in MRI signals, which is an indirect measure of aggregate action po
tentials and local field potentials (Kahn et al., 2013; Logothetis et al., 
2001; Shmuel and Leopold, 2008). 

The ideal study’s perfect spatial coverage would be essential for 
reducing potential causal confounds. Given that fMRI has full spatial 
coverage, this benefit extended to the present study. However, the ideal 
study’s perfect spatial resolution would allow the FC algorithms used in 
the present study to even better account for potential causal con
founders, such as neural signals lost through averaging into observed 
voxel time series. The ideal study’s perfect temporal resolution would 
present a challenge to the FC algorithms used here, since action poten
tials and downstream changes in local field potentials would occur with 
a temporal lag. Such lags would provide additional constraints on causal 
inferences not accounted for in the present study, but which are utilized 
in actflow studies utilizing higher temporal resolution methods (Mill 
et al., 2022). As mentioned above, another important component in the 
ideal study would be to follow the causal chain from stimulus to 
distributed cognitive processes to behavior. This more comprehensive 
explanation of the DLPFC n-back effect is beyond the scope of the pre
sent study, but something close to this level of explanation—of a 
different set of neurocognitive phenomena—has been achieved in a 
recent actflow study (Ito et al., 2022). Finally, the ideal study would use 
stimulation and lesion approaches to fully verify the causal relevance of 
observed neural signals. 

We estimated FC networks using resting-state data, which has 
become a standard approach in neuroimaging. However, a recent study 
demonstrated improvements in actflow predictions when using task- 
state FC (relative to resting-state FC) (Cole et al., 2021). We nonethe
less chose to use resting-state FC here, given improvements in explan
atory power with this approach. Specifically, successful actflow 
predictions using FC from a brain state (rest) other than the state of 
interest (here the n-back task) provided evidence that our inferences 
were based on latent connectivity properties that generalize across brain 
states (McCormick et al., 2022). This approach contrasts with focusing 
on an FC configuration unique to the current state of interest, with no 
information regarding the generalizability of the resulting actflow 
model to other states/tasks. Further, inferring FC networks using data 
from another state reduces the chance of overfitting to noise (Lever 
et al., 2016), which could potentially result in false-positive inferences. 
An additional practical consideration of using resting-state data here, 
given that our dataset included much more resting-state data than task 
data, is that FC estimation is substantially improved by including more 
time points, such that actflow predictions can be improved using the 
brain state(s) with the greatest amount of data (Cole et al., 2021; San
chez-Romero and Cole, 2021). Using FC estimates from the state of in
terest nonetheless provides an opportunity for future research, given the 
possibility that some details of the actflow mechanisms generating 
cognitive effects were not observed with the present approach (e.g., 
task-specific DLPFC FC updates during the n-back task). 

In our study, FC networks were inferred using the PC algorithm due 
to its effective use of statistical conditional independence information 
and causal principles, implementation simplicity, efficient run times 
with many variables, and adaptability (here we used linear conditional 
association tests, but nonlinear or nonparametric tests can also be 
considered for future studies). Nonetheless, the PC algorithm has two 
important assumptions, which we were only able to partially address in 
our version of the algorithm: (i) Acyclicity of the true network. Here we 
used a PC adjacency discovery step that previously showed good per
formance on cyclic simulations (Sanchez-Romero et al., 2019), and also 
showed good control of false-positive connections in our simulations. In 
addition, we excluded PC orientation rules based specifically on the 
assumption of acyclicity (see PC algorithm section), preferring to retain 
undirected connections that may suggest the presence of cycles rather 
than risking incorrect orientations. Note that we included cycles in our 
simulations, allowing us to assess how detrimental violations of the 
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non-cyclic assumptions of the PC algorithm are likely to be. (ii) No 
unmeasured confounders. The presence of unmeasured confounders 
weakens the mechanistic interpretation of the PC results due to uncer
tainty about the real causal driver of the inferred connection between 
region pairs. There are standard strategies to mitigate the impact of 
confounders in fMRI applications. In our study we followed two: (1) 
Account for temporal and physiological confounders by detrending and 
applying nuisance regression to the BOLD time series (see Methods, 
Ciric et al., 2017; Murphy et al., 2009), and (2) account for all regions of 
interest by using a brain parcellation with full cortical coverage. In cases 
when suspected confounders are hard to measure, another strategy is to 
use directed FC methods that explicitly model the presence of unmea
sured confounders like Fast Causal Inference (Malinsky and Spirtes, 
2017; Spirtes et al., 2000) and Two-Step (Sanchez-Romero et al., 2019). 
It is not straightforward to determine how actflow models should be 
parameterized with these more complex directed FC approaches, but 
solving this problem is a promising opportunity to strengthen the 
mechanistic validity of actflow models. 

Of particular relevance for empirical applications of actflow is the PC 
algorithm’s collider orientation step (Box 1.2.1), since collider causal 
structures (X → Z ← Y) are the structures of most interest for inferring 
the generation of neurocognitive function via actflow. This is because 
the generation of functionality likely requires multiple elements mixing 
and interacting in some way—the exact situation described by a collider. 
This requirement for multiple elements interacting to generate some
thing new is not unique to neural processing, as it is a property of the 
universe that compositional elements (e.g., hydrogen and oxygen) 
interact to produce unique configurations with new properties (e.g., 
H2O/water). And so we conceptualize the activity of multiple brain re
gions interacting as they influence right DLPFC—via a collider causal 
structure—to help produce working memory functionality. Notably, 
collider-based interactions may benefit from non-linearities (e.g., super- 
linear DLPFC activity when two or more inputs are present), suggesting 
potentially fruitful future research focusing on non-linear collider 
interactions. 

The PC algorithm, as applied here, estimates contemporaneous 
functional associations from fMRI data, but for neural data acquired 
with higher temporal resolution, such as electroencephalography (EEG) 
or magnetoencephalography (MEG), it would be possible to apply 
temporal FC methods based on autoregressive processes that identify 
temporally lagged functional interactions between brain regions 
(Amblard and Michel, 2013; Biswas and Shlizerman, 2022; Gilson et al., 
2019; Malinsky and Spirtes, 2018; Moneta et al., 2011; Novelli et al., 
2019; Runge, 2018; Shen et al., 2019; Stramaglia et al., 2014). For 
example, as mentioned above, Mill et al. (2022) recently showed how 
temporally resolved FC can characterize the dynamics of the 
task-evoked activity flows that produce cognitive computations. We 
chose not to use lag-based autoregressive modeling approaches here due 
to the fundamental sluggishness of the hemodynamic response (~6 s 
delay from neural input to peak hemodynamic signal), as well as the low 
temporal sampling of each neural population with fMRI (720 ms TR 
here). These temporal properties contrast substantially with the range of 
direct-interaction lags between neural populations, which have been 
shown with microstimulation in non-human primates to be on the order 
of 3–6 ms (Firmin et al., 2014; Yazdan-Shahmorad et al., 2018). While 
direct-interaction lags may be longer between distant regions within the 
human brain, they are unlikely to be on the order of 720 ms (or 6 s), as 
would likely be required for effective lag estimation with fMRI data. 

The FC methods presented here, despite not considering the tem
poral information of the BOLD signal, assume stationarity of the signals, 
in particular related to the possibility that two brain regions X and Y are 
statistically associated only because they are confounded by a temporal 
trend t (e.g., X ← t → Y). To mitigate the confounding effect of a potential 
temporal trend and to better estimate the association between brain 
regions, we included a linear detrending step in our empirical BOLD 
signal preprocessing (see Materials and Methods). 

In our study we focused on FC methods leveraging conditional in
dependence information and particular causal principles, but other 
available directed FC methods could also in principle be applied. 
Promising alternatives are an efficient implementation of the popular 
dynamical causal modeling (DCM) approach (Frässle et al., 2021), and 
neural network modeling approaches, such as mesoscale individualized 
neurodynamic modeling (MINDy) (Singh et al., 2020) and current-based 
decomposition (CURBD) (Perich et al., 2020). These methods use 
different causal principles and estimation techniques than the PC algo
rithm (and related Bayesian network methods Ramsey et al., 2011, 
2017), and thus offer future opportunities to explore the robustness and 
diversity of possible mechanistic actflow explanations across diverse FC 
procedures. 

Related studies have presented statistical models to predict task ac
tivations using resting-state FC and structural connectivity (Tavor et al., 
2016), spatial maps (e.g., default mode network) (Dohmatob et al., 
2021), and surface-level time series (Ngo et al., 2022). Importantly, 
these models differ fundamentally from the actflow approach in that 
they are optimized for prediction rather than causal mechanism and 
prediction. Thus, while these approaches can reveal the general factors 
that may contribute to task activations (e.g., structural connectivity 
patterns), unlike actflow they are not designed to reveal how specifically 
those factors contribute to the generation of task activations (and 
associated cognition). 

Taken together, the results presented here show that actflow models 
built using directed FC methods can accurately predict activations for a 
wide variety of brain regions and task conditions, offering a basis for 
developing future mechanistic explanations that advance our under
standing of network-based distributed cognitive computations in the 
human brain. 
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Carlson, S., Martinkauppi, S., Rämä, P., Salli, E., Korvenoja, A., Aronen, H.J., 1998. 
Distribution of cortical activation during visuospatial n-back tasks as revealed by 
functional magnetic resonance imaging. Cereb. Cortex 8 (8), 743–752. https://doi. 
org/10.1093/cercor/8.8.743. 

Christophel, T.B., Klink, P.C., Spitzer, B., Roelfsema, P.R., Haynes, J.D., 2017. The 
distributed nature of working memory. Trends Cogn. Sci. (Regul. Ed.) 21 (2), 
111–124. https://doi.org/10.1016/j.tics.2016.12.007. 

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T., 
Elliott, M.A., Eickhoff, S.B., Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S., 
Satterthwaite, T.D., 2017. Benchmarking of participant-level confound regression 
strategies for the control of motion artifact in studies of functional connectivity. 
Neuroimage 154, 174–187. https://doi.org/10.1016/j.neuroimage.2017.03.020. 

Cole, M.W., Ito, T., Bassett, D.S., Schultz, D.H., 2016. Activity flow over resting-state 
networks shapes cognitive task activations. Nat. Neurosci. 19 (12), 1718. https:// 
doi.org/10.1038/nn.4406. 

Cole, M.W., Ito, T., Cocuzza, C., Sanchez-Romero, R., 2021. The functional relevance of 
task-state functional connectivity. J. Neurosci. https://doi.org/10.1523/ 
JNEUROSCI.1713-20.2021. 

Colenbier, N., Van de Steen, F., Uddin, L.Q., Poldrack, R.A., Calhoun, V.D., 
Marinazzo, D., 2020. Disambiguating the role of blood flow and global signal with 
partial information decomposition. Neuroimage 213, 116699. https://doi.org/ 
10.1016/j.neuroimage.2020.116699. 

Colombo, D., Maathuis, M.H., 2014. Order-independent constraint-based causal structure 
learning. J. Mach. Learn. Res. 15 (1), 3741–3782. https://jmlr.org/papers/v15/colo 
mbo14a.html. 

Constantinidis, C., Franowicz, M.N., Goldman-Rakic, P.S., 2001. The sensory nature of 
mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 4 (3), 
311–316. https://doi.org/10.1038/85179. 

Courtney, S.M., Petit, L., Maisog, J.M., Ungerleider, L.G., Haxby, J.V., 1998. An area 
specialized for spatial working memory in human frontal cortex. Science 279 (5355), 
1347–1351. https://doi.org/10.1126/science.279.5355.1347. 

Curtis, C.E., D’Esposito, M, 2003. Persistent activity in the prefrontal cortex during 
working memory. Trends Cogn. Sci. (Regul. Ed.) 7 (9), 415–423. https://doi.org/ 
10.1016/S1364-6613(03)00197-9. 

Dohmatob, E., Richard, H., Pinho, A.L., Thirion, B., 2021. Brain topography beyond 
parcellations: local gradients of functional maps. Neuroimage 229, 117706. https:// 
doi.org/10.1016/j.neuroimage.2020.117706. 

Eberhardt, F., Glymour, C., Scheines, R., 2005. On the number of experiments sufficient 
and in the worst case necessary to identify all causal relations among N variables. In: 
Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, 
pp. 178–184. In: https://dl.acm.org/doi/proceedings/10.5555/3020336. 

Finn, E.S., Huber, L., Jangraw, D.C., Molfese, P.J., Bandettini, P.A., 2019. Layer- 
dependent activity in human prefrontal cortex during working memory. Nat. 
Neurosci. 22 (10), 10. https://doi.org/10.1038/s41593-019-0487-z. Article.  

Firmin, L., Field, P., Maier, M.A., Kraskov, A., Kirkwood, P.A., Nakajima, K., Lemon, R. 
N., Glickstein, M., 2014. Axon diameters and conduction velocities in the macaque 
pyramidal tract. J. Neurophysiol. 112 (6), 1229–1240. https://doi.org/10.1152/ 
jn.00720.2013. 
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