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NEUROSCIENCE

Activity flow underlying abnormalities in brain
activations and cognition in schizophrenia

Luke J. Hearne'*, Ravi D. Mill', Brian P. Keane?3, Grega Repovs?,

Alan Anticevic’, Michael W. Cole’

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to
aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that
aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce
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cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the
movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance
imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow
models accurately predict aberrant cognitive activations across multiple brain networks. Within the same frame-
work, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain
activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-
scale network mechanism contributing to cognitive dysfunction in SZ.

INTRODUCTION

Generalized cognitive impairment is one of the most pervasive and
stable markers of schizophrenia (SZ) (I). Modern brain imaging tech-
niques, such as functional magnetic resonance imaging (fMRI), have
linked cognitive dysfunction in SZ to abnormal localized brain activity
(2). For example, during working memory (WM) tasks, individuals
with SZ tend to show differences in frontoparietal and default-mode
activation compared to healthy controls (HCs) (3, 4). However, it is
likely that cognitive dysfunction emerges in SZ due to abnormal inter-
actions between brain regions, not localized activations. This is known
as the “dysconnection hypothesis” (5). It is currently unclear how
behavioral impairment emerges from the interaction of dysconnected
FC and aberrant task-evoked activations. Here, to bridge this gap, we
link these observations (dysfunctional activity and connectivity) using
a recently developed framework termed activity flow mapping.

The last three decades of imaging work have firmly established
SZ as a disorder of dysconnectivity (6). Functional connectivity (FC),
defined as the statistical dependence between distinct brain regions,
has been instrumental in testing the dysconnection hypothesis, which
was originally theorized over a century ago (7). FC strength tends
to be reduced in SZ, with evidence of impaired global network orga-
nization (2, 8). Moreover, the interplay between salience, fronto-
parietal, and default-mode networks is particularly affected in SZ
(9). Current thinking suggests that one mechanism underpinning
dysconnection in SZ is the abnormal N-methyl-p-aspartate receptor—
mediated synaptic plasticity (10).

Despite the substantial evidence for dysconnectivity, it remains
less clear how FC in SZ leads to abnormal brain activations and cog-
nitive deficits. Inspired by connectionist computational modeling
principles (11), we recently developed activity flow mapping, a modeling
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approach that can be extended to test how distributed sources con-
tribute to localized brain activity (see Fig. 1) (12, 13). Within this
framework, in the context of fMRI, the strength of FC describes the
spread of task activations between brain regions. This approach of-
fers complementary information to traditional fMRI analyses by
explaining how a given activation emerges from distributed FC and
activity. We have previously shown that activity flow is accurate at
predicting held-out task activations in both simulated and empiri-
cal data from healthy young adults (12, 14, 15). Critically, applying
this method to clinical data allows us to investigate how dysconnectivity
and dysfunctional activity flows influence abnormal activations di-
rectly tied to deficits in cognition (16).

Dysfunctional activity flow could arise in a number of ways.
Congruent with the dysconnection hypothesis, it may be that aberrant
FC transforms relatively healthy activity in one brain region to dys-
functional activity in another (16). Alternatively, relatively healthy
FC could propagate preexisting aberrant activations across brain re-
gions. Last, it may be some mixture of the two, whereby milder
“subthreshold” dysfunctional FC interacts with subthreshold aber-
rant activity to produce suprathreshold dysfunctional activations
associated with dysfunctional cognition.

Prediction of
group-level activity

Prediction of
held-out activity in j

L fow via FC — 2\
ctivity flow
Actyity S
J's predicted activity = Y. (li’s activity x connectivity i-with-j) HC SZ

i)

Fig. 1. The activity flow algorithm. The task-evoked activation of brain region j
can be predicted by summing the activity of all other brain regions (i) weighted by
their connectivity with j. The critical assumption of activity flow (which is tested via
comparing predicted to actual activations) is that activations are produced by dis-
tributed processes that are well characterized by FC estimates. If aberrant activa-
tions in SZ reflect distributed processing, activity flow predictions should be able
to replicate group activation differences in the empirical data.
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In the current study, we leveraged HC (N = 93) and SZ data
(N =36) from the University of California, Los Angeles (UCLA) Con-
sortium for Neuropsychiatric Phenomics (CNP) LA5c Study (17).
Participants completed a spatial capacity WM task (see Fig. 2),
which has previously been used to isolate brain activity differences
between SZ and HC (4). Using general linear modeling (GLM), we
first compared task-evoked activations between HC and SZ and
identified four differentially activated cortical regions. Then, using
activity flow mapping, we tested whether these dysfunctional acti-
vations in SZ emerged from distributed abnormal activity flows.
Last, within the activity flow framework, we simulated a hypothetical
“connectivity-based intervention” to produce new testable hypotheses
for improving cognitive deficits in SZ.

RESULTS

Behavioral differences in spatial WM

Given that we sought to characterize the brain network mechanisms
underlying cognitive dysfunction in SZ, we began by testing for cog-
nitive dysfunction in the SZ group during a spatial capacity WM task
(SCAP; Fig. 2A). This task has previously been used to identify be-
havioral and brain activation differences between HC and SZ co-
horts (4, 18). During the task, participants are shown an array of
one, three, five, or seven yellow circles positioned pseudo-randomly
around a fixation cross (2 s). After a variable delay period, a “target”
circle appears, and participants are asked to indicate whether the target
matched any of the yellow circles in the initial array. Here, we
considered arrays of one or three as low WM load and arrays of five
or seven as high WM load.

As expected, participants in the SZ cohort performed less accu-
rately [Msz = 86.3%, Myc = 73.1%, t(43.6) =4.81, d = 1.20, P < 0.001]
and slower than the HC group [Msz = 1237 ms, Myc = 1101 ms,
1(64.9) = -3.23, d = 0.63, P = 0.002]. When behavioral accuracy was
compared in a two (group: SZ versus HC) by two (WM load: low
versus high) mixed analysis of variance, there were significant main
effects of both group [F(1,127) = 37.53, np2 =0.29,P <0.001] and WM
[F(1,127) = 149.5, np* = 0.54, P < 0.001) (Fig. 2B). However, there
was no significant interaction between the two factors [F(1,127) = 2.9,
np® = 0.02, P = 0.09]. Likewise, when comparing reaction time, main
effects of both group [F(1,127) = 10.16, 'r]p2 =0.07, P=0.002] and

A Low WM: setsize=1or3 B HC
Encoding High WM: set size= 5or7
— Sz
Delay =0
Retrieval 3 80
o
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Fig. 2. The spatial capacity WM task (SCAP). (A) Participants were shown a
pseudo-randomly positioned array of one, three, five, or seven yellow circles.
A variable length delay screen was then shown, followed by a single green target
circle. Participants were asked to indicate whether the green circle was in the same
position as any of the yellow circles in the initial array. We contrasted behavior and
imaging from the low (set size = 1 or 3) and the high (set size =5 or 7) WM conditions.
(B) Task accuracy on the SCAP (chance = 50%). Main effects of WM and group were
both observed.
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WM were significant [F(1,127) = 259.2, np2 =0.67, P <0.01]. As
above, there was no significant interaction [F(1,127) = 1.23, np2 =0.01,
P =0.27]. These results demonstrate that, as expected, the SZ group
performed the spatial WM task worse than the HC group across both
low and high WM load conditions.

Dysfunctional spatial WM activations in SZ

We next sought to identify localized dysfunctional task-evoked brain
activations, which we will subsequently seek to predict via activity
flow-related brain network mechanisms hypothesized to underlie
cognitive dysfunction in SZ. Throughout Results, we will refer to func-
tional brain networks delineated by Ji et al. (19) in the Glasser et al.
(20) brain parcellation (see Fig. 3).

Task-evoked brain activity was estimated using a standard GLM
for each task condition (see Materials and Methods). We contrasted
the high WM conditions (set size = 5 and 7) and the low WM
conditions (set size = 1 and 3), before conducting comparisons
between the two cohorts (HC versus SZ). In response to increased
WM demands, both cohorts demonstrated increased activation
within dorsal attention and visual networks and deactivations with-
in the default-mode network (Fig. 3). Four cortical regions were
differentially modulated in patients relative to controls [P < 0.05,
family-wise error (FWE) permutation corrected], demonstrating
dysfunctional task-evoked activations. These regions of interest
(ROIs) included the (i) left ventral anterior cingulate cortex (ACC;
parcel 57, cingulo-opercular network), (ii) right medial superior
temporal area (MST; parcel 182, higher order visual network),
(iii) right posterior operculum of the sylvian fissure (PO; parcel 285,
cingulo-opercular network), and (iv) the right posterior insula
(PT; parcel 347, cingulo-opercular network) [shown by black borders
in Fig. 3A (right); parcel borders refer to the original work by
Glasser ef al. (20). All four regions were deactivated for high
compared to low WM load conditions, and the magnitude of this
deactivation was lower for SZ. Likewise, when network-averaged
activations were analyzed, the default-mode network demonstrated
the same pattern of activity with significant differences between
groups (Fig. 3C, Prwg < 0.05). Prior work has established reduced
deactivations as a hallmark of SZ WM deficits and may indicate
a lack of spontaneous cognition suppression during WM task
performance (3, 21, 22).

In addition to significant activation differences between groups,
the activation within each of these brain ROIs, as well as the
default-mode network, correlated with overall task performance
(r = —0.26 to —0.35, Pyops < 0.05). Likewise, the average activation
across these brain regions correlated with several memory and
cognitive control tasks performed outside of the scanner, including
measures spanning episodic memory, WM, fluid reasoning, and
attention (see table S1). Together, these results demonstrate that
we identified key dysfunctional cortical regions involved in dys-
functional SZ performance during spatial WM and broader cognitive
demands.

FC dysconnection in SZ

SZ is considered a disorder of abnormal FC (5, 23). Hence, we tested
for group differences in FC between our ROIs (identified via the task
activation analyses reported in the previous section) and the rest of
the brain (fig. S2). We found limited differences in FC between groups.
In the left MST, we found two differences to/from regions within
the right cerebellum [#(76.4) = 4.25, Ppwg = 0.02] and striatum
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Fig. 3. Brain activity associated with the spatial capacity WM task. (A) Group average brain activity for the contrast (high > low WM). Significant differences (Prwe < 0.05,
718 comparisons) were found in four cortical regions within the visual and cingulo-opercular network (shown in black borders). (B) Brain parcellation (718 parcels)
and network affiliations (12 networks) used in the study (22). No reliable differences were found in the subcortex, therefore visualization in (A) was limited to the cortex.
Subcortical results are presented in fig. S1. (C) Network level group by WM brain activation differences. A significant interaction effect was observed within the
default-mode network (Ppwe < 0.05, 12 comparisons). Network labels (x axis) match the colors in (B). vis1, primary visual; vis2, secondary visual; smn, somatomotor; con,
cingulo-opercular; dan, dorsal attention; lan, language; fpn, frontoparietal; aud, auditory; dmn, default-mode pmm, posterior multimodal; vmm, ventral multimodal; oan,

orbito-affective.

[#(72.6) = 4.01, Ppwg = 0.046], such that FC was higher in SZ. We also
observed lower FC in SZ between the right PI and the right ACC
[#(98.3) = —4.39, Ppwg = 0.01]. There were no significant FC differ-
ences concerning the left ACC and right PO (Ppwg > 0.05) regions.
Moreover, when averaging FC within/across networks, we found no
statistical differences between groups (Ppwg > 0.05).

Activity flow mapping predicts dysfunctional

activations in SZ

Inspired by connectionist neural network modeling principles (11, 13),
activity flow mapping tests the idea that task-evoked activity is prop-
agated between brain regions via distributed processes captured by
FC (12). Each held-out target activation is modeled as the sum of all
other task activation amplitudes weighted by their FC with the target
brain region (recall Fig. 1). Performed iteratively, activity flow mapping
results in a set of brain activity predictions for each region, experi-
mental condition and participant in the dataset. This approach has
previously been validated in healthy individuals (12, 14).

We tested whether activity flow mapping predictions could reca-
pitulate the network- and region-level brain activity dysfunctions
identified in the empirical data (i.e., Fig. 3). Activity flow mapping
was applied to every subject to predict activity in low and high WM
demand conditions. Activity was then subjected to the same con-
trast used in the empirical data, low versus high WM demands,
generating a single whole-brain activity vector for each participant.
To assess activity flow predictions at the whole-brain level, for each
subject, the real and predicted data were compared via correlation,
mean absolute error (MAE), and the R% Critically, the four ROIs
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were held out of the activity flow prediction; this ensured that accu-
rate predictions did not rely upon simply transferring dysfunction
from one dysfunctional region to another. Repeating the analysis
including the four held out regions did not alter the results (see the
Supplementary Materials).

Across both groups, activity flow mapping successfully predicted
activity patterns across the whole brain: ryc = 0.63 [one-sample
t test compared to zero, #(92) = 57.2, P<0.001], sz = 0.60 [#(35) =31.4,
P <0.001], MAEgc = 0.62, MAEgz = 0.61, R*c = 0.40 [£(92) = 26.0,
P <0.001], and R%z = 0.35 [#(35) =13.6, P < 0.001] (Fig. 4A). When
compared, predictions were not significantly better for either group
(P > 0.15 across all measures).

Next, we chose to focus on regions that had shown statistically
robust group differences in the empirical data (i.e., those in Fig. 3A,
Prwe-corrected < 0.05). For each of these specific regions, we per-
formed a between groups  test on the predicted activation data. Group
differences were observed in three of the four regions: left ACC:
£(95.4) = 3.01, Ppops = 0.014; right MST: £(72.5) = 1.64, Pyons = 0.425;
right PO: £(82.3) = 3.39, Pyons = 0.004; right PI: £(88.4) = 3.45, Pyone =
0.003 (Bonferroni-corrected for four comparisons). In addition, these
predictions all mirrored the pattern of empirical data, whereby HCs
were characterized by decreased WM load activity relative to SZ.
The same pattern of results was found in the default-mode network:
£(74.5) = 3.05, P = 0.003 (Fig. 4B).

Predicting behavioral dysfunction
In addition to group differences in brain activity, we validated whether
the activation predictions replicated the existing brain-behavior
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relationships. We first correlated individual differences in actual
and predicted activity with WM task accuracy. We found that
all ROIs were negatively correlated with behavior, such that greater
deactivation was related to improved task accuracy (left ACC:
rho = —0.29, Pyonf < 0.001; right MST: rho = —0.26, Pyone = 0.012; right PO:
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Fig. 4. Predicting dysfunctional activity with activity flow mapping. (A) Group
averaged empirical (Real) and predicted (Pred) activations (high > low WM) for HC
and SZ groups. Note that r and MAE statistics were conducted at the participant level
and then averaged (group averages are shown visually). (B) Real (top) and predicted
(bottom) activations for the four ROIs and the default-mode network. Aside from
the right MST located in the visual cortex, group differences could be captured in
the activity flow predicted data. *P < 0.05. As noted in the main text, the exploratory
empirical analyses were family-wise error corrected for 718 comparisons, whereas
the confirmatory analyses were Bonferroni corrected for four comparisons.

rho = —0.35, Pponf < 0.001; right PI: rho = —0.34, Pyope < 0.001; dmn:
rho = —0.29, Pyons = 0.004; Bonferroni-corrected for five comparisons)
(Fig. 5A, top). Using activity flow mapping, the magnitude and di-
rection of these results could be replicated for most comparisons
(left ACC: tho = —0.25, Pponf = 0.023; right PO: rtho = —0.27, Pyonf =
0.008; dmn: rho = —0.31, Pyons = 0.001), but not for the right MST
(rho = 0.02, P = 0.86) or PI (rho = —0.17, Pyonr = 0.25; Bonferroni-
corrected for five comparisons; Fig. 5A, bottom).

Leveraging the existing relationship between the empirical activa-
tions and behavioral task accuracy (i.e., Fig. 5A), we fit a cross-validated
support vector regression (SVR) model with activations predicting
behavior and applied the model to the activity flow activations (see
Materials and Methods). This process resulted in a new predicted task
accuracy for each individual in the SZ cohort (Fig. 5B). Validating
the accuracy of the activity flow mapping approach, the predicted
SZ task accuracies remained lower than the HC data [#(76.51) = —4.24,
P < 0.001]. However, these differences were smaller in magnitude
compared to the empirical SZ behavioral data; the predicted task
accuracy was higher than the empirical SZ task accuracy [#(70) = 2.42,
P =0.02]. In combination, these results demonstrate that the activ-
ity flow mapping approach captured meaningful variance related to
the dysfunctional brain-behavior relationships observed in SZ.

Activity flow contributions to dysfunctional activity

Having established that activity flow mapping accurately predicts
group-level dysfunction in brain activity, we sought to investigate how
these differences arise within the model. Recall that a given activity
flow estimate is the sum of individual flow terms (7’s activity x connectivity
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Fig. 5. Relationship between activity flow predictions and individual differences in behavior. (A) Correlations between SCAP accuracy scores (y axis) and real activity
(top) or predicted brain activity (bottom) for each ROI. (B) Comparison between empirical task accuracy and behavioral predictions derived from activity flow mapping.
Activity flow could replicate the behavioral dysfunction in the SZ cohort, although with a smaller effect size. *P < 0.05. As noted in the main text, the correlations were

Bonferroni corrected for five comparisons.
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i-with-j). Activity flow terms therefore represent a potential brain-
wide map capturing the regional contributions that give rise to a target
activation magnitude. Thus, we investigated how these individual flow
terms differed across the two groups, giving rise to dysfunctions in
activity (Fig. 6).

The ROIs within the cingulo-opercular network (ACC, PO, and
PI) tended to have a spatially similar activity flow profile when con-
trasting high and low WM demand (Fig. 6A). This pattern was
characterized by negative activity flow from the inferior parietal
lobule in HC (stemming from the negative activation observed in
Fig. 3A). In addition to this common pattern, each region had a dis-
tinct pattern of activity flow contributions.

We found select differences in activity flow terms between groups
when analyzed at the brain region level. The right ACC showed
consistently higher activity flow terms in SZ across the three ROIs

Flow magnltude

® Target region
-0. 01 0 0 01 9 9

[ACC: #(61.48) = 3.87, Prwg = 0.03; PO: £(79.0) = 3.91, Prwg = 0.02;
PI: #(81.1) = 3.78, Ppwg = 0.03]. The same pattern of increased SZ
activity flow terms was observed in the right PO regarding the right
supplementary motor area [£(116.4) = 3.86, Prwg = 0.02] and neigh-
boring PO cortex [t(69.8) = 3.78, PrpwE = 0.03], as well as the right PI
and the intraparietal area [#(88.3) = 4.20, Ppwg = 0.007].

At the network level, for the left ACC and right PO, the groups
differed in activity flow terms from the sensory-motor [£(88.5) = 2.95,
Prwe = 0.025] and the cingulo-opercular network [£(86.27) = 3.84,
Prwg = 0.001], respectively (Fig. 6B). In the right PI, groups differed
across dorsal attention, frontoparietal, and language functional net-
works [£(75.5) = 2.70, Ppwg = 0.034; t(83.7) = 4.10, Ppwg < 0.001; and
t(74.7) = 3.61, Ppwg = 0.001]. All of these group differences were
characterized by increased activity flow terms in the SZ compared
to the HC cohorts. Overall, these results suggest dysfunctional

O HC
B sz

oan

Col

fpn
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Fig. 6. Activity flow contributions to localized dysfunctional activity. (A) Region-specific activity flow terms (i.e., region i's activity x connectivity i-with-j) used to

predict the target activation (rows) within each cohort. The sum of all terms equals the final activity flow prediction. These spatial maps represent a plausible model of

how an individual activation emerges within the activity flow mapping framework. Black borders indicate Prywe < 0.05 (718 comparisons). Subcortical results are presented
in fig. S3. (B) Summary polar plots indicating the summation of activity flow terms within each network. The shaded patches indicate 95% confidence intervals. *Prye <

0.05 (12 comparisons).
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activity flow between the source regions and sensorimotor or cogni-
tive control networks in SZ.

As noted in the prior section, activity flow mapping did not pro-
duce accurate predictions for the right MST located in the visual
cortex. As shown in Fig. 6, this was due to within-network activity
flow terms dominating the predicted values. This is in line with re-
cent evidence suggesting that activity flow mapping is less accurate
in regions that are lower in the cortical hierarchy (e.g., in visual cor-
tex) due to distributed activity influencing those regions less (24).

Simulating FC changes to normalize patient brain activity
and behavior
In our final analysis, we sought to simulate a hypothetical connectivity-
based hypothetical “treatment” for SZ. Brain stimulation techniques
that alter FC are a potential focal treatment option for psychiatric
disorders (25). Therefore, we extended the activity flow mapping
framework to investigate the feasibility of changes in FC resulting in
normalized dysfunctional brain activations and cognition. Results
from this in silico analysis have the potential to generate testable
hypotheses guiding future brain stimulation interventions.

Briefly, we used a linear regression model to fit empirical SZ ac-
tivations to the average healthy activation for each ROI. The model

A
Regression
model
Patient Healthy
activation > activation
necti‘/ify intervention
B ACC MST
182

oo

0p ©0
&Y

Prediction of
"normalized" activity in j

S
A€

A Functional connectlwty
- |

weights were then used to derive the simulated connectivity inter-
vention for each individual (Fig. 7A; see Materials and Methods for
full details). The difference between the average empirical FC and
the simulated FC is shown in Fig. 7B. Overall, our data-driven con-
nectivity intervention demonstrated increased FC between each tar-
get region and regions within the parietal and prefrontal cortices; in
conjunction with decreased sensory network (visual and motor cor-
tices), FC would serve to normalize dysfunctional activations and
behavior. The four simulated interventions were highly correlated
with each other (fmean = 0.71), suggesting that a single connectivity
intervention might normalize activity for all four regions. Moreover,
the connectivity intervention decreased the similarity in group-
averaged FC between the SZ and HC (7ean = 0.54), compared to the
empirical data (#iyean = 0.92). This suggests that the regression model
did not simply replace the existing SZ FC weights with those more
similar to healthy participants.

To verify the simulated FC hypothetical treatment, we repeated
the original activity flow mapping analysis to predict a new set of
task-evoked activations. We compared the empirical SZ activity val-
ues to the predicted activations in SZ (Fig. 7D). For two of the four
regions, the predicted activations significantly differed in the same
direction as the HC empirical data; left ACC: #(70) = 2.96, Ppons = 0.02
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Fig. 7. Hypothetical connectivity intervention in SZ. (A) A regression model was used to optimize SZ FC to best fit the HC data. The simulated FC was then used to
predict activations in the activity flow framework. (B) Average data-driven FC intervention weights for each ROl in the SZ cohort. The four simulated interventions were
highly correlated with each other (rmean = 0.92), despite the interventions being calculated independently for each target region. (C) The top/bottom five cortical regions
requiring the largest connectivity intervention across ROIs. (D) The FC intervention was verified by applying activity flow mapping with the altered FC; SZ activation levels
were normalized (purple) compared to empirical SZ activity (orange) and HC activity (gray). The interventions were calculated and tested using cross-validation, with
separate subjects used for intervention calculation and testing. (E) Predicted behavior generated from simulated FC (purple) compared to the empirical task accuracy. By

altering SZ FC, our model suggests that behavior would be improved. *P < 0.05.
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(corrected for four comparisons); right PI: £(70) = 3.62, Pyops= 0.002.
For the other two regions, activity was decreased but not signifi-
cantly; right PO: #(70) = 2.34, Pyonr = 0.08; right MST: #(70) = 2.07,
Ppyonf = 0.17. Then, we applied the newly altered activations to the
brain-behavior SVR model previously trained on empirical data
(i.e., Fig. 5B). This resulted in a new predicted task accuracy for
each individual in the SZ cohort based on their hypothetically al-
tered activations (Fig. 7E). The predicted task accuracies showed
marked improvement over the original SZ behavior [12.8% differ-
ence; #(70) = —4.76, P < 0.001]. These results demonstrate the plau-
sibility of connectivity-based SZ treatments resulting in normalized
cognitive activations and improved cognitive function in SZ.

Control analyses

fMRI data are thought to have 2 to 5 mm of spatial smoothing due
to vasculature rather than neural activity (26). This smoothness could
potentially bias activity flow estimates by allowing the target activity
to “leak” into the source activity. This would introduce some circu-
larity as information from the target would be used to predict the
same target. To confirm that this was not the case, we repeated the
analyses by excluding all parcels with any vertices within 10 mm of
each target region from the set of source regions when calculating
FC. Activity flow predictions replicated for the whole-brain result
[rac = 0.53, one-sample ¢ test compared to zero, £(92) = 37.3, P < 0.001,
rsz = 0.48, t(35) = 17.8, P < 0.001] and the group differences in spe-
cific brain areas [ROI ACGC; #(95.1) = 2.95, Ppont = 0.02; ROI MST:
£(75.2) = 1.33, Ppon = 0.75; ROI PO: £(84.9) = 3.31, Pyons = 0.005; ROI
PI: £(858) = 3.25, Pponf = 0.005; Bonferonni-corrected for four mul-
tiple comparisons].

The CNP dataset was collected at two different MRI sites. In the
current analysis, there were significant differences in the ratio of data
collected from the two different MRI sites (77% of data collected
from site one in SZ versus 47% in HC; see Table 1). To ensure that

our results were not confounded by MRI site, we repeated the analyses
in the ROI within a subset of the data demonstrating no MRI site
differences between groups () test, P = 0.15, 64% versus 47%). All of
the current SZ subjects were included (N = 36), but 34 HC subjects
were excluded (N = 59). Activity flow predictions replicated for the
whole-brain results [rc = 0.64, t(92) = 46.84, P < 0.001, rsz = 0.60,
£(35) = 31.39, P < 0.001] and the group differences in specific brain
areas [ROI ACC: #(93.0) = 2.62, P = 0.04; ROI MST: #(81.9) = 0.89,
P=0.99; ROI PO: £(86.1) = 3.07, P=0.01; ROI PL: #90.1) = 3.01, P=0.01].

DISCUSSION

Cognitive impairment is a core feature of SZ and is related to both
aberrant FC and abnormal task-evoked activity (6). In line with the
“dysconnection” hypothesis (5), we proposed that aberrant network
interactions (activity flows) lead to altered cognitive activations that
produce dysfunctional behavior. To test this prediction, we used ac-
tivity flow mapping to model the movement of task-related activity
between brain regions as a function of FC. We showed that behavior-
related dysfunctional activations could be accurately predicted from
spatially distributed sources, suggesting that FC plays a key role in
producing aberrant activity and behavior in SZ. Specifically, we ob-
served increased activity flow between sensorimotor and cognitive
control networks in SZ, which resulted in clinically relevant reduced
deactivations suggestive of an inability to deactivate distracting in-
formation. Building on these results, using data-driven simulations,
we found that altering regions within the parietal and prefrontal
cortices provided the most optimal intervention in normalizing ac-
tivity and behavioral performance in individuals with SZ.

Deficits in WM have been consistently observed in SZ (27, 28).
Cognitive tasks that engage WM typically involve activation of the
frontoparietal network (FPN) and deactivation of the default-mode
network (DMN). Increased dissociation between these two systems

Table 1. Demographics and basic cognitive and clinical measures. Welch’s t tests are reported except for the “MRI site” and “sex” variables where x> tests

were performed.

HC (n=93) SZ (n=36) P value
Age, years, and mean (SD) 33 (8.68) 35.5(8.87) 0.16
Sexnma|e(%) 59(6344%)26(7222%) 6.46
MR|s|teonen(%) 72(7742%)17(4722%) 0002
Education, years, andmean (SD)  1516(159) 27804 <0.001
Head motion, RMS, and mean (SD) ~ 006(003) 008003 0002
Cognmvemeaswes N
Matrix reasoning 20.43 (4.36) 15.78 (4.68) <0.001
 Letter/number sequencing 21050890 1775659 <0.001
Vocabulary 43.48 (8.66) 32 (8.99) <0.001
C/,n,ca/measures .
© Brief psychiatric rating scale, average score (D)
Posmvesymptoms 23(114)
 Negativesymptoms 181076
Man|a/d|sorgan|zat|on 176(076)
Depressmn/anx'ety 243(115)
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is thought to be beneficial for task performance (3, 29, 30). While
both HC and SZ cohorts engaged these networks, we observed sig-
nificantly reduced deactivations in SZ within the DMN. Task-evoked
deactivations have been interpreted as the suppression of goal-irrelevant
functions supported by the DMN (e.g., mind wandering) (3, 21) and
may be a critical trait marker in SZ (22).

We found the same pattern of reduced deactivation, as we ob-
served in the DMN, within four cortical areas belonging to the cingulo-
opercular network (CON) and visual network (labeled in Fig. 3A).
Activation patterns in these regions correlated with performance on
the spatial WM task and other, more general cognitive deficits (e.g.,
in reasoning and attention). These empirical observations add to
a growing literature implicating CON dysfunction in SZ (8), which
may represent the breakdown in perception-action cycles often ob-
served in SZ (31).

To test the idea that aberrant task-evoked activations emerge from
distributed FC, we used activity flow mapping, which is a recently
developed method based on neural network simulations (12, 13).
This approach models a given activation as the FC-weighted sum of
all other brain regions’ activity. Activity flow mapping complements
traditional methods that estimate where group differences emerge
by attempting to model how these activation differences emerge
from FC interactions. As in previous work with empirical fMRI
data from HCs (12, 14) and patients with Alzheimer’s disease (16),
we found that this approach was broadly accurate at predicting
task-evoked activity across the whole brain at the individual-subject
level (correlation between real and prediction values = 0.60). Con-
firming our hypothesis, group differences in activation within the
ROIs were recapitulated by activity flow predictions, suggesting
that distributed activity flows over FC play an important role in
shaping abnormal task-evoked activation magnitudes in SZ.

Relatively small differences in FC between groups were observed
(i.e., only 3 of 2868 possible connections with the abnormally acti-
vated regions survived multiple comparison correction). This would
suggest that dysconnection is unlikely to fully explain the aberrant
activations. On the other hand, given that all regions with signifi-
cantly altered activations were held out of each activity flow model-
ing analysis, normal FC spreading dysfunctional activity between
brain regions is not likely either. Rather, it is likely that both sub-
threshold dysfunctional FC and activity interact to produce dys-
function activation. Another prominent possibility is that activity
flow processes, which are weighted sums of distributed activations,
pool a large number of subthreshold aberrant activations (possibly
over healthy FC) to produce significant aberrant activations. While
large-scale FC dysconnectivity is well characterized in SZ (6, 8),
these results highlight the likely contribution of abnormal local
(within-region) processing as well (32). The high accuracy of most
of the activity flow predictions suggests that even if diffuse local
(within-region) processing is the fundamental cause of SZ dysfunc-
tion (e.g., from subtle glutamate receptor malfunctions), that dys-
function is spread and likely pooled via activity flow processes to
create significant dysfunctional localized activations.

For each aberrant brain region we examined, the sources of ac-
tivity flow contributions differed. This result supports the idea that
a brain region’s function (or in this case, dysfunction) is determined
by its unique connectivity profile (33, 34). The dysfunctional reduced
deactivations observed in SZ were associated with increased activity
flow from sensorimotor and cognitive control networks, when com-
pared to HC. However, in the ROI located within the visual cortex
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(ROI 182), activity flow mapping performed poorly. This is poten-
tially due to the high degree of local processing in that specific brain
region, which would not be captured by the assumption of distrib-
uted processing within the activity flow framework (24).

Brain stimulation techniques that alter FC are being increasingly
seen as a potential focal treatment option for psychiatric disorders
(25). To gain insight into FC-based treatment in SZ, we simulated a
hypothetical connectivity-based intervention. Our simulation sug-
gested that increased FC between the dysfunctional ROIs and select
brain regions in the prefrontal and parietal cortices FPN led to pre-
dictions of significantly improved brain activity and behavior. The
simulated FC interventions were numerically small, supporting the
idea that subtle (though perhaps widespread) changes in FC can have
a large impact on behavior (35, 36) and clinical status (37). Critical-
ly, the FC generated by the in silico intervention was less similar to
HC than the empirical data, suggesting that simply normalizing the
FC was not effective at transforming unhealthy activations. Instead,
this would suggest that future FC interventions should aim to cor-
rect both FC dysfunction and existing abnormal local activity.

Existing attempts to use brain stimulation as a therapeutic inter-
vention in SZ have largely focused on stimulating dorsolateral pre-
frontal cortex with mixed outcomes (38, 39). The evidence for prefrontal
cortex (PFC) stimulation sites in SZ is supported by its abnormal ac-
tivation during cognitive control (4, 40), its disrupted connectivity
profile (41, 42), and neurotransmitter regulation (43). Our data-driven
simulation complements these observations by corroborating the
role of PFC in SZ dysfunction and providing new hypotheses to test
regarding particular parietal and temporal lobe regions (see Fig. 7).
A key avenue for future research will be incorporating data-driven
brain models into personalized stimulation treatments (25).

We deliberately investigated SZ in a case control design for two
reasons. First, the spatial WM task used here has previously demon-
strated clinically relevant group differences in brain activity (4).
Second, SZ research has identified abnormal connectivity as a key
factor in producing abnormal brain activity and behavior (5, 7).
However, it is becoming increasingly recognized that psychiatric
disorder categories may not carve nature at its joints, resulting in
high heterogeneity within disorders, and overlap between disorders
(44). This is exemplified by recent studies that have demonstrated
commonalities in connectivity disruptions across multiple disorders
(45). Pertinent to the current study, cognitive deficits are also com-
mon in many other psychiatric disorders (46). This suggests that the
current results may not be specific to SZ per se but may reflect
general effects observable across multiple disorders. Another con-
sideration is the effect of medication on brain activity in SZ (47).
The current cohort was medicated, and, although highly similar
dysfunctional brain activations during WM tasks have been demon-
strated in unmedicated cohorts (48), it will be valuable to investigate
the effects of medications on activity flow estimates. These analyses
will likely provide information to link drug-induced FC changes to
normalized brain activations and behavior. Likewise, as more data
become available, it will be important for future studies to replicate
the effects uncovered in the current analyses.

Activity flow predictions replicated critical empirical effects, such
as group status and correlations with behavior; however, the predic-
tion magnitudes at the single-subject level (r = 0.60) underperformed
compared to previous work (12). We believe that this is likely due to
the data quality in the current dataset, compared to the gold-standard
Human Connectome Project, which was used in previous work.
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Maximizing the amount of data used in the FC estimation has been
shown to improve performance (14). An argument could be made
that poorer brain mapping results are unavoidable in clinical co-
horts, but we found similar prediction accuracies in both HCs and
patients. Potential discrepancies between the two groups may have
been avoided by our stringent head motion removal and participant
exclusion procedures (see Materials and Methods). Aside from data
quality, improvements could also be made to the activity flow map-
ping approach. The current iteration of activity flow is a linear model,
and adding more complexity will likely produce better predictions
of empirical data (13). For example, models of early visual cortex
are more accurate when incorporating nonlinearities (49). Consider-
ing the MST ROI, a visual cortex brain region that the current linear
activity flow predicted poorly, it is possible that adding nonlinear
terms to this problem would result in improvements in model per-
formance. Moreover, we examined differences in activation defined
by an arbitrary statistical threshold (Prwg < 0.05; Fig. 3); an interest-
ing extension of the activity flow framework will include the inter-
pretation of subthreshold activation predictions.

In conclusion, by linking FC and brain activity in a single meth-
odological approach, we have demonstrated that clinically relevant
activations and behavior in SZ are related to (and plausibly caused
by) dysfunctional flow of activity across FC networks. The current
results also generate new hypotheses regarding brain stimulation sites
for the treatment of cognitive deficits in SZ. Future work should aim
to extend the activity flow mapping framework across multiple psy-
chiatric disorders with the aim of developing clinically useful per-
sonalized brain models.

MATERIALS AND METHODS

Participants

The data used in this study were obtained from the UCLA CNP LA5c
Study via the OpenNeuro database (accession number: ds000030)
(17, 50). The CNP contains multimodal brain imaging and behavioral
data from healthy adults (n = 130) and those with attention deficit
hyperactivity disorder (n = 43), bipolar (n = 49), or SZ (n = 50)
diagnoses. All participants were right-handed. Diagnoses were based
on the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition-Text Revision (DSM-IV), per the Structured Clinical
Interview for DSM-IV (SCID-I). Full details regarding the original
participant recruitment, exclusions, and study procedures can be
found in the corresponding data paper (17). Participants gave written
informed consent following procedures approved by the Institutional
Review Boards at UCLA and the Los Angeles County Department
of Mental Health. Data from the CNP have previously been used to
predict SZ status (51, 52), as well as characterize psychiatric illness
across disorders (53, 54).

For the purposes of the current study, we leveraged an age- and
sex-matched subset of the HC (n = 93) and SZ (n = 36, exclusions
due to missing data and head motion, clarified in subsequent sections)
cohorts (see Table 1 for basic demographics). Most of the participants
(n=27) in the SZ cohort had an SZ diagnosis (DSM-IV-TR), and the
remaining were diagnosed with schizoaffective disorder (n = 9). Almost
all patients at the time of testing were medicated (n = 32; see table S2).

The spatial capacity WM task
In the current study, we focused on the SCAP task, which has previously
been used to identify behavioral and brain activation differences between
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HC and SZ cohorts (4, 18). During the SCAP, participants are shown
an array of one, three, five, or seven yellow circles positioned pseudo-
randomly around a fixation cross (2 s). A variable length delay screen
is then shown (1.5, 3, or 4.5 s), followed by a single green target circle
(3-s fixed response). Participants were asked to indicate whether the
green circle was in the same position as any of the yellow circles in
the initial array. On half the trials, the green and yellow circles were
aligned (true-positive), with the other half being true-negative. In
total, 48 trials were completed (12 for each array set size and 4 for
each delay length). Before completing the SCAP in the scanner, par-
ticipants underwent a supervised instruction and training period.

In the current study, we contrasted brain and behavioral data
from the one and three sized arrays (low WM, 24 trials) versus the
five and seven sized arrays (high WM, 24 trials) while ignoring the
delay factor. The behavioral data from the SCAP was analyzed by
contrasting accuracy and mean reaction time between the high and
low WM conditions. The total accuracy (score of 48) was also used
to correlate brain and behavioral variables. A single HC subject
was excluded due to poor performance on the task (accuracy = 31%,
z=-5.32).

Data acquisition and preprocessing

The CNP dataset (17) was acquired on one of two 3T Siemens Trio
scanners at either the Ahmanson-Lovelace Brain Mapping Center
(Siemens version Syngo MR B15) or the Staglin Center for Cognitive
Neuroscience at UCLA (Siemens version Syngo MR B17). Functional
MRI data were collected using a T2*-weighted echo-planar imaging
sequence [slice thickness = 4 mm, 34 slices, time repetition (TR) =2 s,
echo time (TE) = 30 ms, flip angle = 90°, matrix = 64 x 64, and field
of view (FOV) = 192 mm (oblique slice orientation)]. Functional data
acquisition included a resting-state scan and seven task paradigms.
Structural Magnetization Prepared Rapid Acquisition Gradient Echo
(MPRAGE) scans were used for image preprocessing (TR = 1.9 s,
TE = 2.26 ms, FOV = 250 mm, matrix = 256 x 256, sagittal plane,
slice thickness = 1 mm, 176 slices). Data collection was split across
two separate days, the order of which was counterbalanced across
participants. Before further analysis, several participants were ex-
cluded on the basis of poor quality or missing data, as identified by
Gorgolewski et al. (50). Complete details for the CNP data collection
and task paradigms can be found elsewhere (17).

Functional and anatomical data underwent a standard volumetric
preprocessing pipeline using fMRIprep (55, version 1.1.8), a nipype-
based tool (56). Following fMRIprep, the data were further processed
using Ciftify (57). Ciftify facilitates the analysis of legacy datasets (such
as the CNP, with no T2-weighted structural images) to adopt aspects
of the “gold standard” Human Connectome Project approach (20). Ulti-
mately, this allows the analyses to be conducted within “grayordinate”
space, incorporating both surface vertices and subcortical voxels, the
advantages of which have been outlined in prior research (20, 57, 58).
See Supplementary Text for full details of the fMRIprep and Ciftify
pipelines. The grayordinate data were then downsampled into the
Cole-Anticevic Brain-wide network partition (CAB-NP), a recent
whole-brain cortical and subcortical atlas comprised 718 brain
regions across the cortex (n = 360) and subcortex (n = 358) (19).

After downsampling, additional standard preprocessing steps
were performed on the parcellated resting-state and task-state fMRI
data. For the resting-state data, the first four TRs were removed. All
data were subjected to demeaning, detrending, and nuisance regres-
sion. The nuisance regression pipeline was based on the empirical
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tests performed by Ciric et al. (59). Specifically, six primary motion
parameters were removed, along with their derivatives and the quadrat-
ics of all regressors (24 motion regressors in total). Physiological noise
was modeled on the basis of white matter and ventricle signals using
aCompCor (60) within fMRIprep. Five component signals were used,
as well as their derivatives and the quadratics of all physiological
noise regressors (20 physiological noise regressors in total).

In addition, for the resting-state data, we used relative root mean
square (RMS) displacement to identify high movement frames in the
data (>0.25 mm,). For each of these data points, an additional “spike”
regressor was added. We also excluded participants with generally
high motion; any participants with more than 20% of their data in
any given functional run above the high motion cutoff (relative
RMS > 0.25) were excluded from the analyses (HC = 6; SZ = 12).
The nuisance regression pipeline was completed immediately before
FC estimation for the resting-state data. For the task-based analyses,
the regressors were incorporated into the task design matrix.

Task activation estimation

For the SCAP task, activations were estimated using a standard
GLM. For each trial, a single boxcar function was used from the
onset of the encoding period to the end of the response period (6.5 to
9.5 s depending on delay condition). For each condition (12; 4
WM x 3 delay), this was convolved with the canonical SPM hemo-
dynamic response function and entered into the GLM, as well as the
nuisance regressors. The result was a region (718) by condition (12)
matrix of regression coefficients representing activation amplitudes
for each participant. For most of the analyses, these activations were
averaged across WM load and subtracted from one another (high to
low). For the main analysis, we performed a between groups t test
(SZ > HC) on this contrast, corrected for multiple comparisons (see
the “Statistical analyses” section). We also performed this analysis at
the level of networks by averaging and contrasting values within the
12 predefined functional networks in the CAB-NP atlas (19). Regions
and networks that demonstrated a significant group effect were cor-
related with behavioral data.

FC estimation

Task-general FC was estimated using both resting-state and data from
three remaining tasks performed in the scanner (balloon analog risk,
stop signal, and task switching). This decision was motivated by
the relatively few time points within the resting-state data relative to
the number of regions within the brain parcellation (152 time points
versus 718 regions), as well as the potential for task-state FC to be a
better predictor of individual differences and activity flow estimates
(14). For the task data, we used finite impulse response (FIR) mod-
eling (nine parameters, equivalent to 18 s) to remove the mean task-
evoked activation response for each condition. FIR has recently been
shown to reduce both false-positive and false-negative rates in the
context of task FC estimates (61). The nuisance regressors were also
added to the GLM. The residuals for each task were concatenated
with the resting-state data into a single time series, which were used
to calculate FC.

Principal components regression was used to estimate FC. Pre-
vious work has determined that multiple regression approaches tend
to perform better than Pearson correlation within the activity flow
mapping framework by removing indirect connections (12). We
opted for principal components analysis (PCA) regression (as op-
posed to multiple regression) due to the similar number of overall
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time points to observations in the current study (811 versus 718), which
we have used successfully before in datasets with similar properties
(12, 15, 16). In this analysis, rather than using every other time se-
ries as a predictor for a given brain region (as in multiple regres-
sion), a PCA is conducted to limit the number of predictors in the
regression model. The resulting B values are then projected into the
original brain region space (from principal component space) to
achieve Nregion — 1 B coefficients (717), which are used as FC edge
weights for a given region. The principal components were calculated
independently for each to-be-predicted region. When performed
across regions, a region x region (718 x 718) FC matrix was com-
puted for each participant. We chose to use the top 100 components
in the PCA regression; however, we completed control analyses to
ensure that this did not significantly affect the activity flow map-
ping results (see fig. S5).

For each ROI identified in the GLM, we performed a between
groups t test (SZ > HC) comparing FC values between the ROI and
all other brain regions, corrected for multiple comparisons (see the
“Statistical analyses” section). We also performed this analysis at
the level of networks by averaging and contrasting values within the
12 predefined functional networks in the CAB-NP atlas (19).

Activity flow mapping
Activity flow mapping was developed as a method to quantify the
relationship between FC and task-evoked activations (12). Inspired
by connectionist principles (11, 13), activity flow mapping posits
that task-evoked activity is propagated between brain regions via
FC. Hence, in any given task state, a target activation is modeled as
the sum of all other source activations during the same task, after
each activation is multiplied by connectivity between the target and
each source.
Equation 1. The activity flow algorithm

P, =

Y AiF; (1)
ifev

where P is the predicted mean activation for region j in a given task,
Aj; is the actual mean activation for region i in a given task (a B
value estimated using a GLM), i indexes all brain regions (vector V)
with the exception of region j, and Fj; is the FC estimate between
region i and region j. As well as holding out the target region (j)
from each prediction, any brain region that demonstrated a signifi-
cant group (SZ versus HC) task activation effect was also held out.
This was to ensure that accurate predictions did not rely upon simply
transferring dysfunction from one dysfunctional region to another;
rather, they had to arise from distributed sources. The algorithm
results in a matrix with predicted activations across all nodes and
task conditions.

Given a set of predictions that match the original activity data in
shape (e.g., region x condition X participant), standard assessments
of prediction accuracy, such as those used in machine learning, were
used. Here, we assessed prediction accuracy for each participant us-
ing correlation (Pearson r), MAE, and the R% Accuracy values were
averaged across conditions and participants before being reported
in text. Code to conduct activity flow mapping and the subsequent
statistics is publicly available via the Brain Activity Flow (“Actflow”)
Toolbox (https://colelab.github.io/ActflowToolbox/).

In addition to the standard assessments of accuracy at the partic-
ipant level noted above, we also tested whether the predicted data
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could replicate the group-level activity differences observed in the
empirical data. To do so, we repeated the high versus low WM con-
trast and group-level ¢ tests in the ROIs (five ¢ tests in total). As in
the empirical data, the same regions/networks were correlated with
behavior to test whether activity flow predictions preserved behav-
iorally relevant patterns of activity.

Probing activity flow predictions

In the current study, we wanted to investigate how dysfunctional
activations in SZ arise from distributed activity and connectivity.
Assuming activity flow mapping produces accurate predictions, the
magnitude of the activity flow terms (i.e., A;Fj;in Eq. 1) represents a
plausible model of information/activity-level flow between a given
source region and the target region. Group differences in activity
flow terms therefore represent dysfunction that is either transferred
from a source region (or network) to the target activation or dys-
function that arises in the target region due to a connectivity-based
transformation from source to target. To quantify this, for each dys-
functional region (identified in the GLM), we compared each activity
flow term in a between groups ¢ test, corrected for multiple compar-
isons. We also performed this analysis at the level of networks by
summing and contrasting values within the 12 predefined function-
al networks in the CAB-NP atlas (19).

Simulating a hypothetical connectivity intervention
Considering that we have a model of how a dysfunctional localized
activation emerges in SZ, an interesting question is raised: What would
need to change in the SZ data to normalize dysfunctional activity and
behavior? In line with the dysconnection hypothesis (5), we sought
to develop a simulated FC “intervention” to answer this question.
Briefly, we used a regression model to fit patient activations to healthy
activation levels in the ROI identified by the GLM. The resulting 8
weights were interpreted as “simulated FC.” We then tested the sim-
ulated FC by using activity flow mapping to produce new, altered
activity predictions. In the final step, we used the altered activations
to generate predictions of SCAP task accuracy, which were compared
to the original empirical data (see fig. S6).

Hypothetical FC model fitting

Using PyTorch (62), we implemented a linear regression model with
gradient descent. Gradient descent was used (rather than standard
linear regression) so that the regression weights (B) could be initial-
ized as the empirical SZ FC, therefore preserving properties of the
empirical data. A separate model was performed for each ROI. For
each regression model, the predictors (X) were the individual em-
pirical activations from the SZ cohort, and the response variable (y)
was the average HC value for the same brain region. No intercept
was included in the model. We used standard model hyperparame-
ters; the optimizer was stochastic gradient descent, the loss function
was mean standard error loss, and the learning rate was set to 1 x
107, The algorithm was repeated 200 times.

A fourfold cross-validation scheme was used (75% of participants
used for training and 25% for testing). Within each training set, the
regression weights were contrasted with the empirical SZ FC to de-
rive a difference score, the magnitude of the FC intervention. This
change in FC was then applied to the empirical SZ FC in the held-
out test set to create the hypothetically altered FC. The result was a
set of altered FC weights for each ROI and participant that yielded
the optimal normalization of their activations.
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Effect of connectivity intervention on activations

and task accuracy

As an alternative to reporting the cross-validated model fit, the al-
tered FC was verified by quantifying the extent to which predictions
of brain activity and behavior in SZ became more similar to HC.
Thus, in each test set, the altered FC and empirical activations were
subjected to the activity flow mapping framework (described in the
previous section) to produce altered activations for the SZ cohort.
These values were statistically compared to the SZ empirical data to
test whether the existing group effect had been normalized. Show-
ing such an effect would be nontrivial, given that the intervention
model was trained on data from independent participants (using
cross-validation).

To relate the normalized activations to behavior, we used an SVR
model using default parameters in scikit-learn (63) (kernel = rbf,
gamma = scale, epsilon = 0.01). For the SVR model, the predictors
(X) were the empirical activations from participants in the four ROIs,
and the response variable (y) was the total accuracy on the SCAP
task (only using data from the training set). This model was then
applied to the altered activations in the test SZ cohort produced by
the hypothetical connectivity intervention, resulting in a behavioral
prediction for each SZ participant. The predicted behavior was then
statistically compared to the empirical behavior in the SZ cohort.

Statistical analyses

Because of the differences in group sizes, Welch’s t test was used for
group comparisons. Likewise, because of the nonnormal distribution of
behavioral variables, correlations were conducted using Spearman’s rank
correlation. Where noted, we used the MaxT permutation approach
(10,000 permutations) to perform FWE multiple comparison correction.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabf2513/DC1

View/request a protocol for this paper from Bio-protocol.
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