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Activity flow underlying abnormalities in brain 
activations and cognition in schizophrenia
Luke J. Hearne1*, Ravi D. Mill1, Brian P. Keane2,3, Grega Repovš4,  
Alan Anticevic5, Michael W. Cole1

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to 
aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that 
aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce 
cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the 
movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance 
imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow 
models accurately predict aberrant cognitive activations across multiple brain networks. Within the same frame-
work, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain 
activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-
scale network mechanism contributing to cognitive dysfunction in SZ.

INTRODUCTION
Generalized cognitive impairment is one of the most pervasive and 
stable markers of schizophrenia (SZ) (1). Modern brain imaging tech-
niques, such as functional magnetic resonance imaging (fMRI), have 
linked cognitive dysfunction in SZ to abnormal localized brain activity 
(2). For example, during working memory (WM) tasks, individuals 
with SZ tend to show differences in frontoparietal and default-mode 
activation compared to healthy controls (HCs) (3, 4). However, it is 
likely that cognitive dysfunction emerges in SZ due to abnormal inter-
actions between brain regions, not localized activations. This is known 
as the “dysconnection hypothesis” (5). It is currently unclear how 
behavioral impairment emerges from the interaction of dysconnected 
FC and aberrant task-evoked activations. Here, to bridge this gap, we 
link these observations (dysfunctional activity and connectivity) using 
a recently developed framework termed activity flow mapping.

The last three decades of imaging work have firmly established 
SZ as a disorder of dysconnectivity (6). Functional connectivity (FC), 
defined as the statistical dependence between distinct brain regions, 
has been instrumental in testing the dysconnection hypothesis, which 
was originally theorized over a century ago (7). FC strength tends 
to be reduced in SZ, with evidence of impaired global network orga-
nization (2, 8). Moreover, the interplay between salience, fronto-
parietal, and default-mode networks is particularly affected in SZ 
(9). Current thinking suggests that one mechanism underpinning 
dysconnection in SZ is the abnormal N-methyl-d-aspartate receptor– 
mediated synaptic plasticity (10).

Despite the substantial evidence for dysconnectivity, it remains 
less clear how FC in SZ leads to abnormal brain activations and cog-
nitive deficits. Inspired by connectionist computational modeling 
principles (11), we recently developed activity flow mapping, a modeling 

approach that can be extended to test how distributed sources con-
tribute to localized brain activity (see Fig. 1) (12, 13). Within this 
framework, in the context of fMRI, the strength of FC describes the 
spread of task activations between brain regions. This approach of-
fers complementary information to traditional fMRI analyses by 
explaining how a given activation emerges from distributed FC and 
activity. We have previously shown that activity flow is accurate at 
predicting held-out task activations in both simulated and empiri-
cal data from healthy young adults (12, 14, 15). Critically, applying 
this method to clinical data allows us to investigate how dysconnectivity 
and dysfunctional activity flows influence abnormal activations di-
rectly tied to deficits in cognition (16).

Dysfunctional activity flow could arise in a number of ways. 
Congruent with the dysconnection hypothesis, it may be that aberrant 
FC transforms relatively healthy activity in one brain region to dys-
functional activity in another (16). Alternatively, relatively healthy 
FC could propagate preexisting aberrant activations across brain re-
gions. Last, it may be some mixture of the two, whereby milder 
“subthreshold” dysfunctional FC interacts with subthreshold aber-
rant activity to produce suprathreshold dysfunctional activations 
associated with dysfunctional cognition.
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Fig. 1. The activity flow algorithm. The task-evoked activation of brain region j 
can be predicted by summing the activity of all other brain regions (i) weighted by 
their connectivity with j. The critical assumption of activity flow (which is tested via 
comparing predicted to actual activations) is that activations are produced by dis-
tributed processes that are well characterized by FC estimates. If aberrant activa-
tions in SZ reflect distributed processing, activity flow predictions should be able 
to replicate group activation differences in the empirical data.

 on July 15, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

mailto:lukehearne@gmail.com
http://advances.sciencemag.org/


Hearne et al., Sci. Adv. 2021; 7 : eabf2513     14 July 2021

MS no: RAabf2513/KS/COGNITIVE NEUROSCIENCE, NEUROSCIENCE

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 13

In the current study, we leveraged HC (N = 93) and SZ data 
(N = 36) from the University of California, Los Angeles (UCLA) Con-
sortium for Neuropsychiatric Phenomics  (CNP) LA5c Study (17). 
Participants completed a spatial capacity WM task (see Fig. 2), 
which has previously been used to isolate brain activity differences 
between SZ and HC (4). Using general linear modeling (GLM), we 
first compared task-evoked activations between HC and SZ and 
identified four differentially activated cortical regions. Then, using 
activity flow mapping, we tested whether these dysfunctional acti-
vations in SZ emerged from distributed abnormal activity flows. 
Last, within the activity flow framework, we simulated a hypothetical 
“connectivity-based intervention” to produce new testable hypotheses 
for improving cognitive deficits in SZ.

RESULTS
Behavioral differences in spatial WM
Given that we sought to characterize the brain network mechanisms 
underlying cognitive dysfunction in SZ, we began by testing for cog-
nitive dysfunction in the SZ group during a spatial capacity WM task 
(SCAP; Fig. 2A). This task has previously been used to identify be-
havioral and brain activation differences between HC and SZ co-
horts (4, 18). During the task, participants are shown an array of 
one, three, five, or seven yellow circles positioned pseudo- randomly 
around a fixation cross (2 s). After a variable delay period, a “target” 
circle appears, and participants are asked to indicate whether the target 
matched any of the yellow circles in the initial array. Here, we 
considered arrays of one or three as low WM load and arrays of five 
or seven as high WM load.

As expected, participants in the SZ cohort performed less accu-
rately [MSZ = 86.3%, MHC = 73.1%, t(43.6) = 4.81, d = 1.20, P < 0.001] 
and slower than the HC group [MSZ = 1237 ms, MHC = 1101 ms, 
t(64.9) = −3.23, d = 0.63, P = 0.002]. When behavioral accuracy was 
compared in a two (group: SZ versus HC) by two (WM load: low 
versus high) mixed analysis of variance, there were significant main 
effects of both group [F(1,127) = 37.53, p2 = 0.29, P < 0.001] and WM 
[F(1,127) = 149.5, p2 = 0.54, P < 0.001) (Fig. 2B). However, there 
was no significant interaction between the two factors [F(1,127) = 2.9, 
p2 = 0.02, P = 0.09]. Likewise, when comparing reaction time, main 
effects of both group [F(1,127) = 10.16, p2 = 0.07, P = 0.002] and 

WM were significant [F(1,127) = 259.2, p2 = 0.67, P < 0.01]. As 
above, there was no significant interaction [F(1,127) = 1.23, p2 = 0.01, 
P = 0.27]. These results demonstrate that, as expected, the SZ group 
performed the spatial WM task worse than the HC group across both 
low and high WM load conditions.

Dysfunctional spatial WM activations in SZ
We next sought to identify localized dysfunctional task-evoked brain 
activations, which we will subsequently seek to predict via activity 
flow-related brain network mechanisms hypothesized to underlie 
cognitive dysfunction in SZ. Throughout Results, we will refer to func-
tional brain networks delineated by Ji et al. (19) in the Glasser et al. 
(20) brain parcellation (see Fig. 3).

Task-evoked brain activity was estimated using a standard GLM 
for each task condition (see Materials and Methods). We contrasted 
the high WM conditions (set size = 5 and 7) and the low WM 
conditions (set size = 1 and 3), before conducting comparisons 
between the two cohorts (HC versus SZ). In response to increased 
WM demands, both cohorts demonstrated increased activation 
within dorsal attention and visual networks and deactivations with-
in the default-mode network (Fig. 3). Four cortical regions were 
differentially modulated in patients relative to controls [P < 0.05, 
family-wise error (FWE) permutation corrected], demonstrating 
dysfunctional task-evoked activations. These regions of interest 
(ROIs) included the (i) left ventral anterior cingulate cortex (ACC; 
parcel 57, cingulo-opercular network), (ii) right medial superior 
temporal area (MST; parcel 182, higher order visual network), 
(iii) right posterior operculum of the sylvian fissure (PO; parcel 285, 
cingulo-opercular network), and (iv) the right posterior insula 
(PI; parcel 347, cingulo-opercular network) [shown by black borders 
in Fig. 3A (right); parcel borders refer to the original work by 
Glasser et al. (20). All four regions were deactivated for high 
compared to low WM load conditions, and the magnitude of this 
deactivation was lower for SZ. Likewise, when network-averaged 
activations were analyzed, the default-mode network demonstrated 
the same pattern of activity with significant differences between 
groups (Fig. 3C, PFWE < 0.05). Prior work has established reduced 
deactivations as a hallmark of SZ WM deficits and may indicate 
a lack of spontaneous cognition suppression during WM task 
performance (3, 21, 22).

In addition to significant activation differences between groups, 
the activation within each of these brain ROIs, as well as the 
default-mode network, correlated with overall task performance 
(r = −0.26 to −0.35, Pbonf < 0.05). Likewise, the average activation 
across these brain regions correlated with several memory and 
cognitive control tasks performed outside of the scanner, including 
measures spanning episodic memory, WM, fluid reasoning, and 
attention (see table S1). Together, these results demonstrate that 
we identified key dysfunctional cortical regions involved in dys-
functional SZ performance during spatial WM and broader cognitive 
demands.

FC dysconnection in SZ
SZ is considered a disorder of abnormal FC (5, 23). Hence, we tested 
for group differences in FC between our ROIs (identified via the task 
activation analyses reported in the previous section) and the rest of 
the brain (fig. S2). We found limited differences in FC between groups. 
In the left MST, we found two differences to/from regions within 
the right cerebellum [t(76.4) = 4.25, PFWE = 0.02] and striatum 

Low WM:  set size = 1 or 3
High WM:  set size =  5 or 7
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Fig. 2. The spatial capacity WM task (SCAP). (A) Participants were shown a 
pseudo-randomly positioned array of one, three, five, or seven yellow circles. 
A variable length delay screen was then shown, followed by a single green target 
circle. Participants were asked to indicate whether the green circle was in the same 
position as any of the yellow circles in the initial array. We contrasted behavior and 
imaging from the low (set size = 1 or 3) and the high (set size = 5 or 7) WM conditions. 
(B) Task accuracy on the SCAP (chance = 50%). Main effects of WM and group were 
both observed.
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[t(72.6) = 4.01, PFWE = 0.046], such that FC was higher in SZ. We also 
observed lower FC in SZ between the right PI and the right ACC 
[t(98.3) = −4.39, PFWE = 0.01]. There were no significant FC differ-
ences concerning the left ACC and right PO (PFWE > 0.05) regions. 
Moreover, when averaging FC within/across networks, we found no 
statistical differences between groups (PFWE > 0.05).

Activity flow mapping predicts dysfunctional 
activations in SZ
Inspired by connectionist neural network modeling principles (11, 13), 
activity flow mapping tests the idea that task-evoked activity is prop-
agated between brain regions via distributed processes captured by 
FC (12). Each held-out target activation is modeled as the sum of all 
other task activation amplitudes weighted by their FC with the target 
brain region (recall Fig. 1). Performed iteratively, activity flow mapping 
results in a set of brain activity predictions for each region, experi-
mental condition and participant in the dataset. This approach has 
previously been validated in healthy individuals (12, 14).

We tested whether activity flow mapping predictions could reca-
pitulate the network- and region-level brain activity dysfunctions 
identified in the empirical data (i.e., Fig. 3). Activity flow mapping 
was applied to every subject to predict activity in low and high WM 
demand conditions. Activity was then subjected to the same con-
trast used in the empirical data, low versus high WM demands, 
generating a single whole-brain activity vector for each participant. 
To assess activity flow predictions at the whole-brain level, for each 
subject, the real and predicted data were compared via correlation, 
mean absolute error (MAE), and the R2. Critically, the four ROIs 

were held out of the activity flow prediction; this ensured that accu-
rate predictions did not rely upon simply transferring dysfunction 
from one dysfunctional region to another. Repeating the analysis 
including the four held out regions did not alter the results (see the 
Supplementary Materials).

Across both groups, activity flow mapping successfully predicted 
activity patterns across the whole brain: rHC = 0.63 [one-sample 
t  test compared to zero, t(92) = 57.2, P < 0.001], rSZ = 0.60 [t(35) = 31.4, 
P < 0.001], MAEHC = 0.62, MAESZ = 0.61, R2

HC = 0.40 [t(92) = 26.0, 
P < 0.001], and R2

SZ = 0.35 [t(35) =13.6, P < 0.001] (Fig. 4A). When 
compared, predictions were not significantly better for either group 
(P > 0.15 across all measures).

Next, we chose to focus on regions that had shown statistically 
robust group differences in the empirical data (i.e., those in Fig. 3A, 
PFWE-corrected < 0.05). For each of these specific regions, we per-
formed a between groups t test on the predicted activation data. Group 
differences were observed in three of the four regions: left ACC: 
t(95.4) = 3.01, Pbonf = 0.014; right MST: t(72.5) = 1.64, Pbonf = 0.425; 
right PO: t(82.3) = 3.39, Pbonf = 0.004; right PI: t(88.4) = 3.45, Pbonf = 
0.003 (Bonferroni-corrected for four comparisons). In addition, these 
predictions all mirrored the pattern of empirical data, whereby HCs 
were characterized by decreased WM load activity relative to SZ.  
The same pattern of results was found in the default-mode network: 
t(74.5) = 3.05, P = 0.003 (Fig. 4B).

Predicting behavioral dysfunction
In addition to group differences in brain activity, we validated whether 
the activation predictions replicated the existing brain-behavior 
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Fig. 3. Brain activity associated with the spatial capacity WM task. (A) Group average brain activity for the contrast (high > low WM). Significant differences (PFWE < 0.05, 
718 comparisons) were found in four cortical regions within the visual and cingulo-opercular network (shown in black borders). (B) Brain parcellation (718 parcels) 
and network affiliations (12 networks) used in the study (22). No reliable differences were found in the subcortex, therefore visualization in (A) was limited to the cortex. 
Subcortical results are presented in fig. S1. (C) Network level group by WM brain activation differences. A significant interaction effect was observed within the 
default-mode network (PFWE < 0.05, 12 comparisons). Network labels (x axis) match the colors in (B). vis1, primary visual; vis2, secondary visual; smn, somatomotor; con, 
cingulo-opercular; dan, dorsal attention; lan, language; fpn, frontoparietal; aud, auditory; dmn, default-mode pmm, posterior multimodal; vmm, ventral multimodal; oan, 
orbito-affective.
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relationships. We first correlated individual differences in actual 
and predicted activity with WM task accuracy. We found that 
all ROIs were negatively correlated with behavior, such that greater 
deactivation was related to improved task accuracy (left ACC: 
rho = −0.29, Pbonf < 0.001; right MST: rho = −0.26, Pbonf = 0.012; right PO: 

rho = −0.35, Pbonf < 0.001; right PI: rho = −0.34, Pbonf < 0.001; dmn: 
rho = −0.29, Pbonf = 0.004; Bonferroni-corrected for five comparisons) 
(Fig. 5A, top). Using activity flow mapping, the magnitude and di-
rection of these results could be replicated for most comparisons 
(left ACC: rho = −0.25, Pbonf = 0.023; right PO: rho = −0.27, Pbonf = 
0.008; dmn: rho = −0.31, Pbonf = 0.001), but not for the right MST 
(rho = 0.02, P = 0.86) or PI (rho = −0.17, Pbonf = 0.25; Bonferroni- 
corrected for five comparisons; Fig. 5A, bottom).

Leveraging the existing relationship between the empirical activa-
tions and behavioral task accuracy (i.e., Fig. 5A), we fit a cross-validated 
support vector regression (SVR) model with activations predicting 
behavior and applied the model to the activity flow activations (see 
Materials and Methods). This process resulted in a new predicted task 
accuracy for each individual in the SZ cohort (Fig. 5B). Validating 
the accuracy of the activity flow mapping approach, the predicted 
SZ task accuracies remained lower than the HC data [t(76.51) = −4.24, 
P < 0.001]. However, these differences were smaller in magnitude 
compared to the empirical SZ behavioral data; the predicted task 
accuracy was higher than the empirical SZ task accuracy [t(70) = 2.42, 
P = 0.02]. In combination, these results demonstrate that the activ-
ity flow mapping approach captured meaningful variance related to 
the dysfunctional brain-behavior relationships observed in SZ.

Activity flow contributions to dysfunctional activity
Having established that activity flow mapping accurately predicts 
group-level dysfunction in brain activity, we sought to investigate how 
these differences arise within the model. Recall that a given activity 
flow estimate is the sum of individual flow terms (i’s activity × connectivity 
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Fig. 4. Predicting dysfunctional activity with activity flow mapping. (A) Group 
averaged empirical (Real) and predicted (Pred) activations (high > low WM) for HC 
and SZ groups. Note that r and MAE statistics were conducted at the participant level 
and then averaged (group averages are shown visually). (B) Real (top) and predicted 
(bottom) activations for the four ROIs and the default-mode network. Aside from 
the right MST located in the visual cortex, group differences could be captured in 
the activity flow predicted data. *P < 0.05. As noted in the main text, the exploratory 
empirical analyses were family-wise error corrected for 718 comparisons, whereas 
the confirmatory analyses were Bonferroni corrected for four comparisons.
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i-with-j). Activity flow terms therefore represent a potential brain-
wide map capturing the regional contributions that give rise to a target 
activation magnitude. Thus, we investigated how these individual flow 
terms differed across the two groups, giving rise to dysfunctions in 
activity (Fig. 6).

The ROIs within the cingulo-opercular network (ACC, PO, and 
PI) tended to have a spatially similar activity flow profile when con-
trasting high and low WM demand (Fig. 6A). This pattern was 
characterized by negative activity flow from the inferior parietal 
lobule in HC (stemming from the negative activation observed in 
Fig. 3A). In addition to this common pattern, each region had a dis-
tinct pattern of activity flow contributions.

We found select differences in activity flow terms between groups 
when analyzed at the brain region level. The right ACC showed 
consistently higher activity flow terms in SZ across the three ROIs 

[ACC: t(61.48) = 3.87, PFWE = 0.03; PO: t(79.0) = 3.91, PFWE = 0.02; 
PI: t(81.1) = 3.78, PFWE = 0.03]. The same pattern of increased SZ 
activity flow terms was observed in the right PO regarding the right 
supplementary motor area [t(116.4) = 3.86, PFWE = 0.02] and neigh-
boring PO cortex [t(69.8) = 3.78, PFWE = 0.03], as well as the right PI 
and the intraparietal area [t(88.3) = 4.20, PFWE = 0.007].

At the network level, for the left ACC and right PO, the groups 
differed in activity flow terms from the sensory-motor [t(88.5) = 2.95, 
PFWE = 0.025] and the cingulo-opercular network [t(86.27) = 3.84, 
PFWE = 0.001], respectively (Fig. 6B). In the right PI, groups differed 
across dorsal attention, frontoparietal, and language functional net-
works [t(75.5) = 2.70, PFWE = 0.034; t(83.7) = 4.10, PFWE < 0.001; and 
t(74.7) = 3.61, PFWE = 0.001]. All of these group differences were 
characterized by increased activity flow terms in the SZ compared 
to the HC cohorts. Overall, these results suggest dysfunctional 
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Fig. 6. Activity flow contributions to localized dysfunctional activity. (A) Region-specific activity flow terms (i.e., region i’s activity x connectivity i-with-j) used to 
predict the target activation (rows) within each cohort. The sum of all terms equals the final activity flow prediction. These spatial maps represent a plausible model of 
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in fig. S3. (B) Summary polar plots indicating the summation of activity flow terms within each network. The shaded patches indicate 95% confidence intervals. *PFWE < 
0.05 (12 comparisons).
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activity flow between the source regions and sensorimotor or cogni-
tive control networks in SZ.

As noted in the prior section, activity flow mapping did not pro-
duce accurate predictions for the right MST located in the visual 
cortex. As shown in Fig. 6, this was due to within-network activity 
flow terms dominating the predicted values. This is in line with re-
cent evidence suggesting that activity flow mapping is less accurate 
in regions that are lower in the cortical hierarchy (e.g., in visual cor-
tex) due to distributed activity influencing those regions less (24).

Simulating FC changes to normalize patient brain activity 
and behavior
In our final analysis, we sought to simulate a hypothetical connectivity- 
based hypothetical “treatment” for SZ. Brain stimulation techniques 
that alter FC are a potential focal treatment option for psychiatric 
disorders (25). Therefore, we extended the activity flow mapping 
framework to investigate the feasibility of changes in FC resulting in 
normalized dysfunctional brain activations and cognition. Results 
from this in silico analysis have the potential to generate testable 
hypotheses guiding future brain stimulation interventions.

Briefly, we used a linear regression model to fit empirical SZ ac-
tivations to the average healthy activation for each ROI. The model 

weights were then used to derive the simulated connectivity inter-
vention for each individual (Fig. 7A; see Materials and Methods for 
full details). The difference between the average empirical FC and 
the simulated FC is shown in Fig. 7B. Overall, our data-driven con-
nectivity intervention demonstrated increased FC between each tar-
get region and regions within the parietal and prefrontal cortices; in 
conjunction with decreased sensory network (visual and motor cor-
tices), FC would serve to normalize dysfunctional activations and 
behavior. The four simulated interventions were highly correlated 
with each other (rmean = 0.71), suggesting that a single connectivity 
intervention might normalize activity for all four regions. Moreover, 
the connectivity intervention decreased the similarity in group- 
averaged FC between the SZ and HC (rmean = 0.54), compared to the 
empirical data (rmean = 0.92). This suggests that the regression model 
did not simply replace the existing SZ FC weights with those more 
similar to healthy participants.

To verify the simulated FC hypothetical treatment, we repeated 
the original activity flow mapping analysis to predict a new set of 
task-evoked activations. We compared the empirical SZ activity val-
ues to the predicted activations in SZ (Fig. 7D). For two of the four 
regions, the predicted activations significantly differed in the same 
direction as the HC empirical data; left ACC: t(70) = 2.96, Pbonf = 0.02 
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Fig. 7. Hypothetical connectivity intervention in SZ. (A) A regression model was used to optimize SZ FC to best fit the HC data. The simulated FC was then used to 
predict activations in the activity flow framework. (B) Average data-driven FC intervention weights for each ROI in the SZ cohort. The four simulated interventions were 
highly correlated with each other (rmean = 0.92), despite the interventions being calculated independently for each target region. (C) The top/bottom five cortical regions 
requiring the largest connectivity intervention across ROIs. (D) The FC intervention was verified by applying activity flow mapping with the altered FC; SZ activation levels 
were normalized (purple) compared to empirical SZ activity (orange) and HC activity (gray). The interventions were calculated and tested using cross-validation, with 
separate subjects used for intervention calculation and testing. (E) Predicted behavior generated from simulated FC (purple) compared to the empirical task accuracy. By 
altering SZ FC, our model suggests that behavior would be improved. *P < 0.05.
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(corrected for four comparisons); right PI: t(70) = 3.62, Pbonf = 0.002. 
For the other two regions, activity was decreased but not signifi-
cantly; right PO: t(70) = 2.34, Pbonf = 0.08; right MST: t(70) = 2.07, 
Pbonf = 0.17. Then, we applied the newly altered activations to the 
brain-behavior SVR model previously trained on empirical data 
(i.e., Fig.  5B). This resulted in a new predicted task accuracy for 
each individual in the SZ cohort based on their hypothetically al-
tered activations (Fig.  7E). The predicted task accuracies showed 
marked improvement over the original SZ behavior [12.8% differ-
ence; t(70) = −4.76, P < 0.001]. These results demonstrate the plau-
sibility of connectivity-based SZ treatments resulting in normalized 
cognitive activations and improved cognitive function in SZ.

Control analyses
fMRI data are thought to have 2 to 5 mm of spatial smoothing due 
to vasculature rather than neural activity (26). This smoothness could 
potentially bias activity flow estimates by allowing the target activity 
to “leak” into the source activity. This would introduce some circu-
larity as information from the target would be used to predict the 
same target. To confirm that this was not the case, we repeated the 
analyses by excluding all parcels with any vertices within 10 mm of 
each target region from the set of source regions when calculating 
FC. Activity flow predictions replicated for the whole-brain result 
[rHC = 0.53, one-sample t test compared to zero, t(92) = 37.3, P < 0.001, 
rSZ = 0.48, t(35) = 17.8, P < 0.001] and the group differences in spe-
cific brain areas [ROI ACC; t(95.1) = 2.95, Pbonf = 0.02; ROI MST: 
t(75.2) = 1.33, Pbonf = 0.75; ROI PO: t(84.9) = 3.31, Pbonf = 0.005; ROI 
PI: t(858) = 3.25, Pbonf = 0.005; Bonferonni-corrected for four mul-
tiple comparisons].

The CNP dataset was collected at two different MRI sites. In the 
current analysis, there were significant differences in the ratio of data 
collected from the two different MRI sites (77% of data collected 
from site one in SZ versus 47% in HC; see Table 1). To ensure that 

our results were not confounded by MRI site, we repeated the analyses 
in the ROI within a subset of the data demonstrating no MRI site 
differences between groups (χ2 test, P = 0.15, 64% versus 47%). All of 
the current SZ subjects were included (N = 36), but 34 HC subjects 
were excluded (N = 59). Activity flow predictions replicated for the 
whole-brain results [rHC = 0.64, t(92) = 46.84, P < 0.001, rSZ = 0.60, 
t(35) = 31.39, P < 0.001] and the group differences in specific brain 
areas [ROI ACC: t(93.0) = 2.62, P = 0.04; ROI MST: t(81.9) = 0.89, 
P = 0.99; ROI PO: t(86.1) = 3.07, P = 0.01; ROI PI: t(90.1) = 3.01, P = 0.01].

DISCUSSION
Cognitive impairment is a core feature of SZ and is related to both 
aberrant FC and abnormal task-evoked activity (6). In line with the 
“dysconnection” hypothesis (5), we proposed that aberrant network 
interactions (activity flows) lead to altered cognitive activations that 
produce dysfunctional behavior. To test this prediction, we used ac-
tivity flow mapping to model the movement of task-related activity 
between brain regions as a function of FC. We showed that behavior- 
related dysfunctional activations could be accurately predicted from 
spatially distributed sources, suggesting that FC plays a key role in 
producing aberrant activity and behavior in SZ. Specifically, we ob-
served increased activity flow between sensorimotor and cognitive 
control networks in SZ, which resulted in clinically relevant reduced 
deactivations suggestive of an inability to deactivate distracting in-
formation. Building on these results, using data-driven simulations, 
we found that altering regions within the parietal and prefrontal 
cortices provided the most optimal intervention in normalizing ac-
tivity and behavioral performance in individuals with SZ.

Deficits in WM have been consistently observed in SZ (27, 28). 
Cognitive tasks that engage WM typically involve activation of the 
frontoparietal network (FPN) and deactivation of the default-mode 
network (DMN). Increased dissociation between these two systems 

Table 1. Demographics and basic cognitive and clinical measures. Welch’s t tests are reported except for the “MRI site” and “sex” variables where 2 tests 
were performed. 

HC (n = 93) SZ (n = 36) P value

Age, years, and mean (SD) 33 (8.68) 35.5 (8.87) 0.16

Sex, n male (%) 59 (63.44%) 26 (72.22%) 0.46

MRI site one, n (%) 72 (77.42%) 17 (47.22%) 0.002

Education, years, and mean (SD) 15.16 (1.59) 12.78 (1.4) <0.001

Head motion, RMS, and mean (SD) 0.06 (0.03) 0.08 (0.03) 0.002

Cognitive measures

 Matrix reasoning 20.43 (4.36) 15.78 (4.68) <0.001

 Letter/number sequencing 21.05 (2.89) 17.75 (3.59) <0.001

 Vocabulary 43.48 (8.66) 32 (8.99) <0.001

Clinical measures

 Brief psychiatric rating scale, average score (SD)

  Positive symptoms 2.8 (1.14)

  Negative symptoms 1.81 (0.76)

  Mania/disorganization 1.76 (0.76)

  Depression/anxiety 2.43 (1.15)
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is thought to be beneficial for task performance (3, 29, 30). While 
both HC and SZ cohorts engaged these networks, we observed sig-
nificantly reduced deactivations in SZ within the DMN. Task-evoked 
deactivations have been interpreted as the suppression of goal-irrelevant 
functions supported by the DMN (e.g., mind wandering) (3, 21) and 
may be a critical trait marker in SZ (22).

We found the same pattern of reduced deactivation, as we ob-
served in the DMN, within four cortical areas belonging to the cingulo- 
opercular network (CON) and visual network (labeled in Fig. 3A). 
Activation patterns in these regions correlated with performance on 
the spatial WM task and other, more general cognitive deficits (e.g., 
in reasoning and attention). These empirical observations add to 
a growing literature implicating CON dysfunction in SZ (8), which 
may represent the breakdown in perception-action cycles often ob-
served in SZ (31).

To test the idea that aberrant task-evoked activations emerge from 
distributed FC, we used activity flow mapping, which is a recently 
developed method based on neural network simulations (12, 13). 
This approach models a given activation as the FC-weighted sum of 
all other brain regions’ activity. Activity flow mapping complements 
traditional methods that estimate where group differences emerge 
by attempting to model how these activation differences emerge 
from FC interactions. As in previous work with empirical fMRI 
data from HCs (12, 14) and patients with Alzheimer’s disease (16), 
we found that this approach was broadly accurate at predicting 
task-evoked activity across the whole brain at the individual-subject 
level (correlation between real and prediction values = 0.60). Con-
firming our hypothesis, group differences in activation within the 
ROIs were recapitulated by activity flow predictions, suggesting 
that distributed activity flows over FC play an important role in 
shaping abnormal task-evoked activation magnitudes in SZ.

Relatively small differences in FC between groups were observed 
(i.e., only 3 of 2868 possible connections with the abnormally acti-
vated regions survived multiple comparison correction). This would 
suggest that dysconnection is unlikely to fully explain the aberrant 
activations. On the other hand, given that all regions with signifi-
cantly altered activations were held out of each activity flow model-
ing analysis, normal FC spreading dysfunctional activity between 
brain regions is not likely either. Rather, it is likely that both sub-
threshold dysfunctional FC and activity interact to produce dys-
function activation. Another prominent possibility is that activity 
flow processes, which are weighted sums of distributed activations, 
pool a large number of subthreshold aberrant activations (possibly 
over healthy FC) to produce significant aberrant activations. While 
large-scale FC dysconnectivity is well characterized in SZ (6,  8), 
these results highlight the likely contribution of abnormal local 
(within-region) processing as well (32). The high accuracy of most 
of the activity flow predictions suggests that even if diffuse local 
(within-region) processing is the fundamental cause of SZ dysfunc-
tion (e.g., from subtle glutamate receptor malfunctions), that dys-
function is spread and likely pooled via activity flow processes to 
create significant dysfunctional localized activations.

For each aberrant brain region we examined, the sources of ac-
tivity flow contributions differed. This result supports the idea that 
a brain region’s function (or in this case, dysfunction) is determined 
by its unique connectivity profile (33, 34). The dysfunctional reduced 
deactivations observed in SZ were associated with increased activity 
flow from sensorimotor and cognitive control networks, when com-
pared to HC. However, in the ROI located within the visual cortex 

(ROI 182), activity flow mapping performed poorly. This is poten-
tially due to the high degree of local processing in that specific brain 
region, which would not be captured by the assumption of distrib-
uted processing within the activity flow framework (24).

Brain stimulation techniques that alter FC are being increasingly 
seen as a potential focal treatment option for psychiatric disorders 
(25). To gain insight into FC-based treatment in SZ, we simulated a 
hypothetical connectivity-based intervention. Our simulation sug-
gested that increased FC between the dysfunctional ROIs and select 
brain regions in the prefrontal and parietal cortices FPN led to pre-
dictions of significantly improved brain activity and behavior. The 
simulated FC interventions were numerically small, supporting the 
idea that subtle (though perhaps widespread) changes in FC can have 
a large impact on behavior (35, 36) and clinical status (37). Critical-
ly, the FC generated by the in silico intervention was less similar to 
HC than the empirical data, suggesting that simply normalizing the 
FC was not effective at transforming unhealthy activations. Instead, 
this would suggest that future FC interventions should aim to cor-
rect both FC dysfunction and existing abnormal local activity.

Existing attempts to use brain stimulation as a therapeutic inter-
vention in SZ have largely focused on stimulating dorsolateral pre-
frontal cortex with mixed outcomes (38, 39). The evidence for prefrontal 
cortex (PFC) stimulation sites in SZ is supported by its abnormal ac-
tivation during cognitive control (4, 40), its disrupted connectivity 
profile (41, 42), and neurotransmitter regulation (43). Our data-driven 
simulation complements these observations by corroborating the 
role of PFC in SZ dysfunction and providing new hypotheses to test 
regarding particular parietal and temporal lobe regions (see Fig. 7). 
A key avenue for future research will be incorporating data-driven 
brain models into personalized stimulation treatments (25).

We deliberately investigated SZ in a case control design for two 
reasons. First, the spatial WM task used here has previously demon-
strated clinically relevant group differences in brain activity (4). 
Second, SZ research has identified abnormal connectivity as a key 
factor in producing abnormal brain activity and behavior (5, 7). 
However, it is becoming increasingly recognized that psychiatric 
disorder categories may not carve nature at its joints, resulting in 
high heterogeneity within disorders, and overlap between disorders 
(44). This is exemplified by recent studies that have demonstrated 
commonalities in connectivity disruptions across multiple disorders 
(45). Pertinent to the current study, cognitive deficits are also com-
mon in many other psychiatric disorders (46). This suggests that the 
current results may not be specific to SZ per se but may reflect 
general effects observable across multiple disorders. Another con-
sideration is the effect of medication on brain activity in SZ (47). 
The current cohort was medicated, and, although highly similar 
dysfunctional brain activations during WM tasks have been demon-
strated in unmedicated cohorts (48), it will be valuable to investigate 
the effects of medications on activity flow estimates. These analyses 
will likely provide information to link drug- induced FC changes to 
normalized brain activations and behavior. Likewise, as more data 
become available, it will be important for future studies to replicate 
the effects uncovered in the current analyses.

Activity flow predictions replicated critical empirical effects, such 
as group status and correlations with behavior; however, the predic-
tion magnitudes at the single-subject level (r = 0.60) underperformed 
compared to previous work (12). We believe that this is likely due to 
the data quality in the current dataset, compared to the gold-standard 
Human Connectome Project, which was used in previous work. 
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Maximizing the amount of data used in the FC estimation has been 
shown to improve performance (14). An argument could be made 
that poorer brain mapping results are unavoidable in clinical co-
horts, but we found similar prediction accuracies in both HCs and 
patients. Potential discrepancies between the two groups may have 
been avoided by our stringent head motion removal and participant 
exclusion procedures (see Materials and Methods). Aside from data 
quality, improvements could also be made to the activity flow map-
ping approach. The current iteration of activity flow is a linear model, 
and adding more complexity will likely produce better predictions 
of empirical data (13). For example, models of early visual cortex 
are more accurate when incorporating nonlinearities (49). Consider-
ing the MST ROI, a visual cortex brain region that the current linear 
activity flow predicted poorly, it is possible that adding nonlinear 
terms to this problem would result in improvements in model per-
formance. Moreover, we examined differences in activation defined 
by an arbitrary statistical threshold (PFWE < 0.05; Fig. 3); an interest-
ing extension of the activity flow framework will include the inter-
pretation of subthreshold activation predictions.

In conclusion, by linking FC and brain activity in a single meth-
odological approach, we have demonstrated that clinically relevant 
activations and behavior in SZ are related to (and plausibly caused 
by) dysfunctional flow of activity across FC networks. The current 
results also generate new hypotheses regarding brain stimulation sites 
for the treatment of cognitive deficits in SZ. Future work should aim 
to extend the activity flow mapping framework across multiple psy-
chiatric disorders with the aim of developing clinically useful per-
sonalized brain models.

MATERIALS AND METHODS
Participants
The data used in this study were obtained from the UCLA CNP LA5c 
Study via the OpenNeuro database (accession number: ds000030) 
(17, 50). The CNP contains multimodal brain imaging and behavioral 
data from healthy adults (n = 130) and those with attention deficit 
hyperactivity disorder (n = 43), bipolar (n = 49), or SZ (n = 50) 
diagnoses. All participants were right-handed. Diagnoses were based 
on the Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition-Text Revision (DSM-IV), per the Structured Clinical 
Interview for DSM-IV (SCID-I). Full details regarding the original 
participant recruitment, exclusions, and study procedures can be 
found in the corresponding data paper (17). Participants gave written 
informed consent following procedures approved by the Institutional 
Review Boards at UCLA and the Los Angeles County Department 
of Mental Health. Data from the CNP have previously been used to 
predict SZ status (51, 52), as well as characterize psychiatric illness 
across disorders (53, 54).

For the purposes of the current study, we leveraged an age- and 
sex-matched subset of the HC (n = 93) and SZ (n = 36, exclusions 
due to missing data and head motion, clarified in subsequent sections) 
cohorts (see Table 1 for basic demographics). Most of the participants 
(n = 27) in the SZ cohort had an SZ diagnosis (DSM-IV-TR), and the 
remaining were diagnosed with schizoaffective disorder (n = 9). Almost 
all patients at the time of testing were medicated (n = 32; see table S2).

The spatial capacity WM task
In the current study, we focused on the SCAP task, which has previously 
been used to identify behavioral and brain activation differences between 

HC and SZ cohorts (4, 18). During the SCAP, participants are shown 
an array of one, three, five, or seven yellow circles positioned pseudo- 
randomly around a fixation cross (2 s). A variable length delay screen 
is then shown (1.5, 3, or 4.5 s), followed by a single green target circle 
(3-s fixed response). Participants were asked to indicate whether the 
green circle was in the same position as any of the yellow circles in 
the initial array. On half the trials, the green and yellow circles were 
aligned (true-positive), with the other half being true-negative. In 
total, 48 trials were completed (12 for each array set size and 4 for 
each delay length). Before completing the SCAP in the scanner, par-
ticipants underwent a supervised instruction and training period.

In the current study, we contrasted brain and behavioral data 
from the one and three sized arrays (low WM, 24 trials) versus the 
five and seven sized arrays (high WM, 24 trials) while ignoring the 
delay factor. The behavioral data from the SCAP was analyzed by 
contrasting accuracy and mean reaction time between the high and 
low WM conditions. The total accuracy (score of 48) was also used 
to correlate brain and behavioral variables. A single HC subject 
was excluded due to poor performance on the task (accuracy = 31%, 
z = −5.32).

Data acquisition and preprocessing
The CNP dataset (17) was acquired on one of two 3T Siemens Trio 
scanners at either the Ahmanson-Lovelace Brain Mapping Center 
(Siemens version Syngo MR B15) or the Staglin Center for Cognitive 
Neuroscience at UCLA (Siemens version Syngo MR B17). Functional 
MRI data were collected using a T2*-weighted echo-planar imaging 
sequence [slice thickness = 4 mm, 34 slices, time repetition (TR) = 2 s, 
echo time (TE) = 30 ms, flip angle = 90°, matrix = 64 × 64, and field 
of view (FOV) = 192 mm (oblique slice orientation)]. Functional data 
acquisition included a resting-state scan and seven task paradigms. 
Structural Magnetization Prepared Rapid Acquisition Gradient Echo 
(MPRAGE) scans were used for image preprocessing (TR = 1.9 s, 
TE = 2.26 ms, FOV = 250 mm, matrix = 256 × 256, sagittal plane, 
slice thickness = 1 mm, 176 slices). Data collection was split across 
two separate days, the order of which was counterbalanced across 
participants. Before further analysis, several participants were ex-
cluded on the basis of poor quality or missing data, as identified by 
Gorgolewski et al. (50). Complete details for the CNP data collection 
and task paradigms can be found elsewhere (17).

Functional and anatomical data underwent a standard volumetric 
preprocessing pipeline using fMRIprep (55, version 1.1.8), a nipype-
based tool (56). Following fMRIprep, the data were further processed 
using Ciftify (57). Ciftify facilitates the analysis of legacy datasets (such 
as the CNP, with no T2-weighted structural images) to adopt aspects 
of the “gold standard” Human Connectome Project approach (20). Ulti-
mately, this allows the analyses to be conducted within “grayordinate” 
space, incorporating both surface vertices and subcortical voxels, the 
advantages of which have been outlined in prior research (20, 57, 58). 
See Supplementary Text for full details of the fMRIprep and Ciftify 
pipelines. The grayordinate data were then downsampled into the 
Cole-Anticevic Brain-wide network partition (CAB-NP), a recent 
whole-brain cortical and subcortical atlas comprised 718 brain 
regions across the cortex (n = 360) and subcortex (n = 358) (19).

After downsampling, additional standard preprocessing steps 
were performed on the parcellated resting-state and task-state fMRI 
data. For the resting-state data, the first four TRs were removed. All 
data were subjected to demeaning, detrending, and nuisance regres-
sion. The nuisance regression pipeline was based on the empirical 
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tests performed by Ciric et al. (59). Specifically, six primary motion 
parameters were removed, along with their derivatives and the quadrat-
ics of all regressors (24 motion regressors in total). Physiological noise 
was modeled on the basis of white matter and ventricle signals using 
aCompCor (60) within fMRIprep. Five component signals were used, 
as well as their derivatives and the quadratics of all physiological 
noise regressors (20 physiological noise regressors in total).

In addition, for the resting-state data, we used relative root mean 
square (RMS) displacement to identify high movement frames in the 
data (>0.25 mm,). For each of these data points, an additional “spike” 
regressor was added. We also excluded participants with generally 
high motion; any participants with more than 20% of their data in 
any given functional run above the high motion cutoff (relative 
RMS > 0.25) were excluded from the analyses (HC = 6; SZ = 12). 
The nuisance regression pipeline was completed immediately before 
FC estimation for the resting-state data. For the task-based analyses, 
the regressors were incorporated into the task design matrix.

Task activation estimation
For the SCAP task, activations were estimated using a standard 
GLM. For each trial, a single boxcar function was used from the 
onset of the encoding period to the end of the response period (6.5 to 
9.5 s depending on delay condition). For each condition (12; 4 
WM × 3 delay), this was convolved with the canonical SPM hemo-
dynamic response function and entered into the GLM, as well as the 
nuisance regressors. The result was a region (718) by condition (12) 
matrix of regression coefficients representing activation amplitudes 
for each participant. For most of the analyses, these activations were 
averaged across WM load and subtracted from one another (high to 
low). For the main analysis, we performed a between groups t test 
(SZ > HC) on this contrast, corrected for multiple comparisons (see 
the “Statistical analyses” section). We also performed this analysis at 
the level of networks by averaging and contrasting values within the 
12 predefined functional networks in the CAB-NP atlas (19). Regions 
and networks that demonstrated a significant group effect were cor-
related with behavioral data.

FC estimation
Task-general FC was estimated using both resting-state and data from 
three remaining tasks performed in the scanner (balloon analog risk, 
stop signal, and task switching). This decision was motivated by 
the relatively few time points within the resting-state data relative to 
the number of regions within the brain parcellation (152 time points 
versus 718 regions), as well as the potential for task-state FC to be a 
better predictor of individual differences and activity flow estimates 
(14). For the task data, we used finite impulse response (FIR) mod-
eling (nine parameters, equivalent to 18 s) to remove the mean task-
evoked activation response for each condition. FIR has recently been 
shown to reduce both false-positive and false-negative rates in the 
context of task FC estimates (61). The nuisance regressors were also 
added to the GLM. The residuals for each task were concatenated 
with the resting-state data into a single time series, which were used 
to calculate FC.

Principal components regression was used to estimate FC. Pre-
vious work has determined that multiple regression approaches tend 
to perform better than Pearson correlation within the activity flow 
mapping framework by removing indirect connections (12). We 
opted for principal components analysis (PCA) regression (as op-
posed to multiple regression) due to the similar number of overall 

time points to observations in the current study (811 versus 718), which 
we have used successfully before in datasets with similar properties 
(12, 15, 16). In this analysis, rather than using every other time se-
ries as a predictor for a given brain region (as in multiple regres-
sion), a PCA is conducted to limit the number of predictors in the 
regression model. The resulting b values are then projected into the 
original brain region space (from principal component space) to 
achieve Nregion − 1 b coefficients (717), which are used as FC edge 
weights for a given region. The principal components were calculated 
independently for each to-be-predicted region. When performed 
across regions, a region × region (718 × 718) FC matrix was com-
puted for each participant. We chose to use the top 100 components 
in the PCA regression; however, we completed control analyses to 
ensure that this did not significantly affect the activity flow map-
ping results (see fig. S5).

For each ROI identified in the GLM, we performed a between 
groups t test (SZ > HC) comparing FC values between the ROI and 
all other brain regions, corrected for multiple comparisons (see the 
“Statistical analyses” section). We also performed this analysis at 
the level of networks by averaging and contrasting values within the 
12 predefined functional networks in the CAB-NP atlas (19).

Activity flow mapping
Activity flow mapping was developed as a method to quantify the 
relationship between FC and task-evoked activations (12). Inspired 
by connectionist principles (11, 13), activity flow mapping posits 
that task-evoked activity is propagated between brain regions via 
FC. Hence, in any given task state, a target activation is modeled as 
the sum of all other source activations during the same task, after 
each activation is multiplied by connectivity between the target and 
each source.
Equation 1. The activity flow algorithm

   P  j   =   ∑ 
i≠j∈V

     A  i    F  ij    (1)

where P is the predicted mean activation for region j in a given task, 
Ai is the actual mean activation for region i in a given task (a b 
value estimated using a GLM), i indexes all brain regions (vector V) 
with the exception of region j, and Fij is the FC estimate between 
region i and region j. As well as holding out the target region (j) 
from each prediction, any brain region that demonstrated a signifi-
cant group (SZ versus HC) task activation effect was also held out. 
This was to ensure that accurate predictions did not rely upon simply 
transferring dysfunction from one dysfunctional region to another; 
rather, they had to arise from distributed sources. The algorithm 
results in a matrix with predicted activations across all nodes and 
task conditions.

Given a set of predictions that match the original activity data in 
shape (e.g., region × condition × participant), standard assessments 
of prediction accuracy, such as those used in machine learning, were 
used. Here, we assessed prediction accuracy for each participant us-
ing correlation (Pearson r), MAE, and the R2. Accuracy values were 
averaged across conditions and participants before being reported 
in text. Code to conduct activity flow mapping and the subsequent 
statistics is publicly available via the Brain Activity Flow (“Actflow”) 
Toolbox (https://colelab.github.io/ActflowToolbox/).

In addition to the standard assessments of accuracy at the partic-
ipant level noted above, we also tested whether the predicted data 
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could replicate the group-level activity differences observed in the 
empirical data. To do so, we repeated the high versus low WM con-
trast and group-level t tests in the ROIs (five t tests in total). As in 
the empirical data, the same regions/networks were correlated with 
behavior to test whether activity flow predictions preserved behav-
iorally relevant patterns of activity.

Probing activity flow predictions
In the current study, we wanted to investigate how dysfunctional 
activations in SZ arise from distributed activity and connectivity. 
Assuming activity flow mapping produces accurate predictions, the 
magnitude of the activity flow terms (i.e., AiFij in Eq. 1) represents a 
plausible model of information/activity-level flow between a given 
source region and the target region. Group differences in activity 
flow terms therefore represent dysfunction that is either transferred 
from a source region (or network) to the target activation or dys-
function that arises in the target region due to a connectivity-based 
transformation from source to target. To quantify this, for each dys-
functional region (identified in the GLM), we compared each activity 
flow term in a between groups t test, corrected for multiple compar-
isons. We also performed this analysis at the level of networks by 
summing and contrasting values within the 12 predefined function-
al networks in the CAB-NP atlas (19).

Simulating a hypothetical connectivity intervention
Considering that we have a model of how a dysfunctional localized 
activation emerges in SZ, an interesting question is raised: What would 
need to change in the SZ data to normalize dysfunctional activity and 
behavior? In line with the dysconnection hypothesis (5), we sought 
to develop a simulated FC “intervention” to answer this question. 
Briefly, we used a regression model to fit patient activations to healthy 
activation levels in the ROI identified by the GLM. The resulting b 
weights were interpreted as “simulated FC.” We then tested the sim-
ulated FC by using activity flow mapping to produce new, altered 
activity predictions. In the final step, we used the altered activations 
to generate predictions of SCAP task accuracy, which were compared 
to the original empirical data (see fig. S6).

Hypothetical FC model fitting
Using PyTorch (62), we implemented a linear regression model with 
gradient descent. Gradient descent was used (rather than standard 
linear regression) so that the regression weights (b) could be initial-
ized as the empirical SZ FC, therefore preserving properties of the 
empirical data. A separate model was performed for each ROI. For 
each regression model, the predictors (X) were the individual em-
pirical activations from the SZ cohort, and the response variable (y) 
was the average HC value for the same brain region. No intercept 
was included in the model. We used standard model hyperparame-
ters; the optimizer was stochastic gradient descent, the loss function 
was mean standard error loss, and the learning rate was set to 1 × 
10−3. The algorithm was repeated 200 times.

A fourfold cross-validation scheme was used (75% of participants 
used for training and 25% for testing). Within each training set, the 
regression weights were contrasted with the empirical SZ FC to de-
rive a difference score, the magnitude of the FC intervention. This 
change in FC was then applied to the empirical SZ FC in the held-
out test set to create the hypothetically altered FC. The result was a 
set of altered FC weights for each ROI and participant that yielded 
the optimal normalization of their activations.

Effect of connectivity intervention on activations 
and task accuracy
As an alternative to reporting the cross-validated model fit, the al-
tered FC was verified by quantifying the extent to which predictions 
of brain activity and behavior in SZ became more similar to HC.  
Thus, in each test set, the altered FC and empirical activations were 
subjected to the activity flow mapping framework (described in the 
previous section) to produce altered activations for the SZ cohort. 
These values were statistically compared to the SZ empirical data to 
test whether the existing group effect had been normalized. Show-
ing such an effect would be nontrivial, given that the intervention 
model was trained on data from independent participants (using 
cross-validation).

To relate the normalized activations to behavior, we used an SVR 
model using default parameters in scikit-learn (63) (kernel =  rbf, 
gamma = scale, epsilon = 0.01). For the SVR model, the predictors 
(X) were the empirical activations from participants in the four ROIs, 
and the response variable (y) was the total accuracy on the SCAP 
task (only using data from the training set). This model was then 
applied to the altered activations in the test SZ cohort produced by 
the hypothetical connectivity intervention, resulting in a behavioral 
prediction for each SZ participant. The predicted behavior was then 
statistically compared to the empirical behavior in the SZ cohort.

Statistical analyses
Because of the differences in group sizes, Welch’s t test was used for 
group comparisons. Likewise, because of the nonnormal distribution of 
behavioral variables, correlations were conducted using Spearman’s rank 
correlation. Where noted, we used the MaxT permutation approach 
(10,000 permutations) to perform FWE multiple comparison correction.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabf2513/DC1

View/request a protocol for this paper from Bio-protocol.
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