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Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the func-
tional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related
changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small
amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality
via rapid changes in inter-regional relationships. We used activity flow mapping—an approach for building empirically
derived network models—to quantify the functional importance of task-state functional connectivity (above and beyond rest-
ing-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that
task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions
and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific func-
tional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still
improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-
evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior
studies found correlations between task-state functional connectivity and individual differences in behavior. These findings
suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network
organization, shifting the flow of neural activity during task performance.

Key words: computational model; human connectome project; machine learning; network coding models; network neuro-
science; task connectivity
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Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and
task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) net-
work organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task
activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task
activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network
organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance
for dynamic cognitive processes despite the small size of these task-related network changes. /
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Figure 1.

Predicted boost to activity flow-based predictions using task-state FC. A, The propagation and activation rules used in neural network modeling provide a framework for modeling

the flow of neural activity through networks. The propagation rule can be visualized via the arrows connecting distal nodes (e.g., region i) to a given target node, h, via a connection with
strength wy;. The activation rule can be visualized via the summing of incoming activity in the target node h, then passing through an activation function, f. The equation for computing the ac-
tivity level a in node his as follows: a, = f(Za;wy); adapted from McClelland and Rogers, 2003. B, We recently developed the activity flow mapping framewaork, applying neural network
modeling to empirical connectivity (and activity) estimates. We showed that activity flow mapping can predict independent (held-out) task activations using resting-state FC (Cole et al., 2016;
Ito et al., 2017; figure is from the study by Cole et al., 2016). €, An illustration of simplified activity flow prediction of task activity in neural population ¥ based on task activity in neural popu-
lation X, based on the resting-state FC between X and Y. D, The hypothesized hoost in prediction accuracy by using the FC estimates from the same state as the task activity estimates. Note
that the to-be-predicted task activity levels are carefully removed before estimating task-state FC (Cole et al., 2019) to avoid circularity.

network models that predict task-evoked activations (Cole et al.,
2016). Here we sought to extend this approach to task fMRI data
to assess the functional relevance of task-state FC. The core
mechanisms underlying these models are the same as those used
in most biological and artificial neural network models: the prop-
agation and activation rules (Fig. 14; McClelland and Rogers,
2003; Ito et al., 2020b). The propagation rule specifies that the ac-
tivity of a distal node influences a given target node via a connec-
tion weight, while the activation rule specifies that the incoming
activity will be summed before passing through a function (typi-
cally, a nonlinearity) to determine the output activity of the tar-
get node. The activity flow-mapping approach (Fig. 1B) builds
on this framework, incorporating empirical FC and activation
estimates to build a predictive model for each to-be-predicted
region (one at a time). Since the activity level of the to-be-pre-
dicted region was empirically observed we can then test the accu-
racy of our model by comparison to empirical data. Thus, by
predicting a variety of cognitive task-evoked activations (e.g.,
across regions and across task conditions), activity flow mapping
provides a means to empirically test the functional (cognitive
and computational) relevance of the connectivity estimates
included in activity flow models (Ito et al., 2020b).

Here we used activity flow mapping to test the functional rele-
vance of task-state FC, especially as task-state FC differs from
resting-state FC. The critical test was whether task-state FC
increased activity flow-based prediction accuracy across a variety
of task conditions. Such an observation would be nontrivial for
several reasons. First, the relatively small changes between task-
state FC and resting-state FC makes it unclear whether task-state
FC would produce significantly better task-evoked activation
prediction accuracies. Second, we recently validated an improved
method for the subtraction of mean task-evoked activations

before task-state FC estimation with fMRI data (Cole et al,
2019), which is the same approach used in the noise correlation
literature to characterize the functional relationship between
neurons and neural populations (typically used in nonhuman
animal neuroscience; Ito et al., 2020a). This better ensures, rela-
tive to many prior studies, that the to-be-predicted activations
have no direct effect on FC estimates (reducing potential circu-
larity; Cole et al., 2019).

Third, we recently replicated the nonhuman animal literature
in finding that most human fMRI FC estimates decreased from
rest to task (Ito et al., 2020a). This appears to run counter to the
common intuition that FC should increase when two neural pop-
ulations interact. One possibility is that—rather than FC increas-
ing—the activity flow between two neural populations increases
as the linear relationship between the populations (i.e., their FC)
decreases (Fig. 1C,D). This would be consistent with the well
supported possibility that the relationship between neural popu-
lations is a sigmoidal transfer function (Wilson and Cowan,
1972; Hopfield, 1982; Ito et al.,, 2020a). We recently used spiking
and neural mass models to show that a sigmoidal transfer func-
tion between brain regions, which quenches variance at high and
low activity levels, was enough to account for the observed FC
decreases with increasing task-evoked neural activity (Ito et al.,
2020a; Fig. 2). However, regardless of whether the sigmoidal
transfer function is the mechanism underlying the relationship
between neural populations, observing improved prediction
accuracies using task-state FC would provide evidence that the
observed changes in FC from rest to task are likely functionally
relevant (rather than statistical artifacts). This is because of the
clear functional relevance of what is being predicted: task-evoked
activations across a variety of brain regions and task conditions
(e.g., visual cortex responses in visual tasks, motor cortex
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Neural populations are thought to interact via sigmoidal activation functions, helping explain widespread FC decreases from resting to task states. A, Spiking model simulation

results from Ito et al. (2020a), showing sigmoidal relationship between inputs and outputs of neural populations. B, Activity increases and decreases from resting state in the spiking model
(Ito et al., 2020a) resulted in decreased variance and correlations in simulated excitatory neurons. Empirical results in both spiking populations and fMRI show that variance and correlations
decrease as activity levels increase or decrease from resting state (He, 2013; Ito et al., 2020a). C, There is substantial evidence that biological neural populations have a sigmoidal relationship,
which could help explain well known neural variability quenching effects from rest to task (He, 2013) as well as reductions in FC from rest to task (Ito et al., 2020a). The relationship between
activity levels across neural populations (i.e., FC) changes as a function of overall activity levels. Figure adapted from Ito et al. (2020a).

responses in motor tasks). Indeed, task activations (neural
activity level changes) can cause perceptual, motor, and cog-
nitive processes (e.g., because of neural stimulation; Valero-
Cabré et al.,, 2017), and likely depend on state-dependent
network reconfigurations.

The critical test of our hypothesis that task-state FC is func-
tionally relevant was whether task-evoked activations are better
predicted by network models parameterized by task-state FC
than those parameterized by resting-state FC. This test would
demonstrate that task-related network reconfigurations facilitate
the propagation of task-related activations, which are commonly
thought of as the primary neural substrate of cognitive processes
(Varoquaux et al., 2018). We conducted a variety of tests of this
hypothesis using fMRI data from the Human Connectome
Project, which provided a large number of task conditions (24)
for activity flow models to predict, as well as a large amount of
task-state and resting-state data per subject for estimating FC.
We began by testing for task-state versus resting-state FC using
the field-standard Pearson correlation FC measure. We then
tested whether better accounting for causal confounds in activity

flow models improved prediction accuracy. Finally, we tested
various factors contributing to task-state FC prediction accuracy,
such as testing whether task-state FC from other tasks (task-gen-
eral FC) could improve predictions as well. Confirmation that
task-state FC consistently improves task activation prediction
across a variety of task conditions would suggest an important
role for task-driven network changes in producing the task acti-
vations underlying perceptual, motor, and cognitive processes.

Materials and Methods

Activity flow mapping. We previously developed and validated activ-
ity flow mapping as a method to help determine the mechanistic role of
empirically estimated connectivity in producing neural activations (Fig.
1B; Cole et al,, 2016). Activity flow mapping involves three steps. First, a
network model is constructed for each node using empirical connectivity
estimates. Second, activity flows are simulated over the connections of
each model to produce predicted activity in each node. Third, prediction
accuracy is assessed by comparing the predicted activity to the actual
empirically observed activity for each node. Prediction accuracy quanti-
fies the likely validity of each activity flow model. All activity flow-
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Table 1. Overview of predicted-to-actual assessment measures
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Predicted-to-actual measureDescription

Pearson correlation (r)

Scaled similarity of a predicted task activity pattern to an actual activity pattern. Unaffected by the prediction being off by a multiplicative factor (e.g., r

would be high even if a prediction is two times higher than actual but with a similar pattern).

R? (coefficient of
determination)

Unscaled similarity of a predicted task activity pattern to an actual activity pattern (not the same as r). When multiplied by 100, percentage of the unscaled
variance of the data to be predicted, ranging from negative infinity (because prediction errors can be arbitrarily large) to positive 1. An B of 0 is equiva-

lent to accurately predicting the mean of the data only. This is a standard definition of R” in machine learning for quantifying continuous predictions.

Node-wise comparison

Similarity of a predicted spatial activity pattern to an actual spatial activity pattern based on node-to-node variance. This can be computed separately for

each task state of interest but collapses across spatial locations. This was used to ensure replication of results across task states.
Condition-wise comparison Similarity of a predicted activity pattern to an actual activity pattern based on condition-to-condition variance. This can be computed separately for each
node but collapses across task conditions. This can be thought of as the response profile or population receptive field of a node.

Compare-then-average

Predicted-to-actual similarity computed for each individual subject separately, prior to averaging similarity estimates across individuals for a group result.

This better characterizes the true predicted-to-actual similarity, since averaging across subjects blurs features of the data because of individual differences
in anatomy (among other features). Unless otherwise noted, all analyses used the compare-then-average approach.

Average-then-compare

Predicted-to-actual similarity computed after averaging predicted activations across all subjects and actual activations across all subjects. While this likely dis-

torts the true predicted-to-actual similarity to some extent, it has the advantage of better signal-to-noise because of averaging of much more data (176
times the data of compare-then-average for this study). It is also more difficult to compute valid p values with this approach, since (unlike compare-
then-average) intersubject variance cannot be taken into account to help ensure results will generalize to new subjects.

mapping analyses used the publicly available Brain Activity Flow
(“Actflow”) Toolbox (https://colelab.github.io/ActflowToolbox/), ver-
sion 0.2.5.

Based on neural network simulations (Fig. 14), the activity flow sim-
ulation step involves estimating net input to each target region by multi-
plying the task-related activation amplitude of each other brain region
(analogous to the amount of neural activity) by its FC with the target
region (analogous to aggregate synaptic strength), as follows:

B= 3 AT

itjev’

where P is the predicted mean activation for region j in a given task, A;
is the actual mean activation for region i in a given task [a B8 value esti-
mated using a general linear model (GLM)], i indexes all brain regions
(vector V) with the exception of region j, and Fj; is the FC estimate
between region i and region j. This algorithm results in a matrix with
predicted activations across all nodes and task conditions. Prediction ac-
curacy was assessed by comparing predicted to actual empirical activa-
tion patterns using multiple approaches (Table 1). Unless specified
otherwise, comparisons were made across both nodes and conditions
simultaneously. This was accomplished by collapsing each of the pre-
dicted and actual node-by-condition matrices into a single vector of
numbers before comparison.

Activity flow mapping was developed in accordance with several prin-
ciples that facilitate its utility for scientific inferences. First, the approach
is agnostic to the particular form of connectivity, so it can be used with
any form of FC, effective connectivity, or structural connectivity (i.e., any
estimate of the routes of activity flow between nodes). This provides the
approach with extensive flexibility. Second, activity flow mapping can be
seen as a method to test the validity of connectivity approaches in that it
tests for model accuracy via prediction of independent data. Third, unlike
standard connectivity benchmarks that depend on test-retest reliability,
activity flow mapping assesses the mechanistic role of network models in
producing neural activations. Thus, model evaluation is not performed
on data of the same form (e.g., connectivity estimates) but rather of a
mechanistically distinct form: neural activations. Thus, activity flow map-
ping can be seen as potentially providing insights into computation and
the emergence of cognitive information (represented via activation levels/
patterns) in each node (Ito et al., 2020b).

Experimental design and statistical analyses. See the subsection Data
collection, below, for details on the experimental design. Paired t tests
(paired by subject) were used for statistical tests when possible. See sub-
sections FC estimation, Task activation level estimation, and familywise
error (FWE) correction for multiple comparisons for further details on
statistical analyses.

Data collection. We used the Washington University-Minnesota
Consortium Human Connectome Project (HCP) young adult publicly
available dataset (Van Essen et al., 2013; available at https://www.

humanconnectome.org/study/hcp-young-adult). Participants were re-
cruited from Washington University in St. Louis (St. Louis, MO) and
the surrounding area. All participants gave informed consent. We
selected 352 low-motion subjects (with no family relations) from the
“1200 Subjects” HCP release. We split the 352 subjects into two
cohorts of 176 subjects: an exploratory cohort (99 females) and a rep-
lication cohort (84 females). The exploratory cohort had a mean age
of 29 years (age range, 22-36 years), and the replication cohort had a
mean age of 28 years (age range, 22-36 years). These 352 participants
were selected by excluding those with any fMRI run in which >50%
of TRs had >0.25 mm framewise displacement or if a family relation
was already included (or if they had no genotyping to verify family
relation status). A full list of the 352 participants used in this study is
included as part of the code release for this project (https://github.
com/ColeLab/TaskFCActflow_release).

Whole-brain echoplanar imaging acquisitions were acquired with a
32-channel head coil on a modified 3 T Siemens Skyra MRI (TR=
720ms; TE=33.1ms; flip angle=52°% bandwidth =2290 Hz/pixel, in-
plane FOV =208 x 180 mm; 72 slices; 2.0 mm isotropic voxels, with a
multiband acceleration factor of 8; Sotiropoulos et al., 2013). Data were
collected over 2 d. On each day, 28 min of rest (eyes open with fixation)
fMRI data across two runs were collected (56 min total), followed by
30 min of task fMRI data collection (60 min total). Resting-state data col-
lection details for this dataset can be found previously (Smith et al.,
2013), as can task data details (Barch et al.,, 2013).

Each of the seven tasks was collected over two consecutive fMRI
runs. Given that the tasks are identical to prior work, the following text
describing the HCP tasks is copied from Ito, et al. (2020a) for clarity:
The seven tasks consisted of an emotion cognition task, a gambling
reward task, a language task, a motor task, a relational reasoning task, a
social cognition task, and a working memory task. Briefly, the emotion
cognition task required making valence judgments on negative (fearful
and angry) and neutral faces. The gambling reward task consisted of a
card-guessing game, where subjects were asked to guess the number on
the card to win or lose money. The language-processing task consisted
of interleaving a language condition, which involved answering ques-
tions related to a story presented aurally, and a math condition, which
involved basic arithmetic questions presented aurally. The motor task
involved asking subjects to either tap their left/right fingers, squeeze
their left/right toes, or move their tongue. The reasoning task involved
asking subjects to determine whether two sets of objects differed from
each other in the same dimension (e.g., shape or texture). The social cog-
nition task was a theory of mind task, where objects (squares, circles, tri-
angles) interacted with each other in a video clip, and subjects were
subsequently asked whether the objects interacted in a social manner.
Last, the working memory task was a variant of the N-back task. Further
details on the HCP task paradigms can be found in previous work
(Barch et al., 2013).
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(young adult dataset; N = 352) was split into separate discovery and replication datasets (N = 176 each). Circularity is carefully avoided in the predictions by (1) FIR regression to remove cross-
block mean task responses before task-state FC estimation, and (2) removal of each to-be-predicted brain region from the set of predictors in the activity flow-mapping step. The goal of the
primary analyses is to compare task activation predictions based on resting-state FC to predictions based on task-state FC.

Data preprocessing. Preprocessing was conducted identically to
another recent study that used HCP data (Ito et al., 2020a). Minimally
preprocessed data for both resting-state and task fMRI were obtained
from the publicly available HCP data. Minimally preprocessed surface
data were then parcellated into 360 brain regions using the Glasser et al.
(2016) atlas. We performed additional standard preprocessing steps on
the parcellated resting-state fMRI and task-state fMRI data. This
included removing the first five frames of each run, demeaning and
detrending the time series, and performing nuisance regression on the
minimally preprocessed data. Nuisance regression was based on empiri-
cal validation tests by Ciric et al. (2017) to reduce the effects of motion
and physiological noise. Specifically, six primary motion parameters
were removed, along with their derivatives, and the quadratics of all
regressors (24 motion regressors in total). Physiologic noise was mod-
eled using aCompCor on time series extracted from the white matter
and ventricles (Behzadi et al., 2007). For aCompCor, the first five princi-
pal components from the white matter and ventricles were extracted sep-
arately and included in the nuisance regression. In addition, we included
the derivatives of each of those components, and the quadratics of all
physiological noise regressors (40 physiological noise regressors in total).
The nuisance regression model contained a total of 64 nuisance parame-
ters. Note that aCompCor was used in place of global signal regression,
given evidence that it has similar benefits as global signal regression for
removing artifacts (Power et al., 2018) but without regressing gray mat-
ter signals (mixed with other gray matter signals) from themselves,
which may result in false correlations (Murphy et al., 2009; Power et al.,
2017).

Task data for task-state FC analyses were additionally preprocessed
using a GLM. The mean evoked task-related activity for each of the 24
task conditions was removed by fitting the task timing (block design) for
each condition. This was accomplished using the exact same canonical
hemodynamic response regressors as used for the task activation esti-
mates, fit simultaneously with a finite impulse response (FIR) model
(Cole et al., 2019). This was critical for removing data analysis circu-
larity (Kriegeskorte et al., 2009), separating the to-be-predicted task
activations from the task-state FC estimates used to predict them

(Fig. 3). Including the exact same regressors as used for task activa-
tion estimation was important to ensure statistical noncircularity in
the activity flow-mapping analyses. We used FIR regressors in addi-
tion to the canonical hemodynamic response regressors, given recent
evidence suggesting that the FIR model reduces both false positives
and false negatives in the identification of FC estimates (Cole et al.,
2019). Further, FIR models are more flexible, removing cross-event/
block variance much better than alternative approaches to better
reduce the chance of analysis circularity. Each set of FIR regressors
included a lag extending 25 time points after task block offset to
account for the postevent hemodynamic undershoot.

FC estimation. All FC estimates were computed using the publicly
available Brain Activity Flow (“Actflow”) Toolbox (https://colelab.
github.io/ActflowToolbox/). The initial analyses estimated FC using
Pearson correlations between time series (averaging across voxels
within each region) from all pairs of brain regions. All computations
involving Pearson correlations used Fisher’s z-transformed values,
which were reconverted to r values for reporting purposes.

We used multiple linear regression (the LinearRegression function in
the Scikit-learn Python package) as an alternative to Pearson correlation.
This involved computing a linear model for each to-be-predicted region
separately. Time series from all other regions were used as predictors of
the time series of the to-be-predicted region. The resulting B values,
which were directional from the predictor regions to the predicted
region, were then used as FC estimates in the activity flow-mapping
algorithm. Note that B estimate directionality reflects optimal linear
scaling of the source time series to best match the target time series, not
necessarily the direction of activity flow. Regularized regression was
used when there were fewer time points than nodes. Specifically, princi-
pal component regression was used, including the maximum number of
components possible (e.g., 199 components if 200 time points were
available).

The number of time points contributing to each FC estimate was
matched for all analyses unless otherwise specified. This typically
involved restricting the amount of resting-state data used for estimating
resting-state FC based on the limited amount of task-state data for the
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to-be-compared task condition. This ensured the task-state FC and rest-
ing-state FC were equated in terms of the amount of data contributing
to their estimates, increasing the validity of comparisons between the
two types of FC estimates.

The Cole-Anticevic Brain-wide Network Partition (CAB-NP) was
used for visualization of network structure (Ji et al., 2019; available at
https://github.com/ColeLab/ColeAnticevicNetPartition).

Task activation-level estimation. Task-evoked activation amplitudes
were estimated using a standard general linear model. The SPM software
canonical hemodynamic response function was used for general linear
model estimation, given that all tasks involved block designs.

Familywise error correction for multiple comparisons. We used the
MaxT nonparametric permutation testing approach to correct for multi-
ple comparisons (Nichols and Holmes, 2002). This involved 1000 per-
mutations to create a null distribution of ¢ values that the actual (paired
t test) t values could be compared with to compute a nonparametric
p value that was familywise error corrected for multiple comparisons.

Assessing individual-specific FC changes. Individual-specific and
state-specific FC effects were evaluated by predicting task-evoked activa-
tions during only the second run of each task. This allowed us to distin-
guish between the effects of an individual’s task-state FC generally
(estimated from the first run of a given task) versus an individual’s task-
state FC from the same run as the task-evoked activations. However,
using task activations from only a single run cut the amount of data con-
tributing to the estimates in half, likely reducing the repeat reliability of
the activation estimates. This resulted in lower prediction accuracies
than most other analyses (though they remained statistically significant
relative to chance).

Each subject’s second task run activations were predicted using activ-
ity flow mapping with five distinct sources of FC as input. Note that
each subject’s second task run activations were used as input across all
FC variants, such that only FC was altered across the five forms of pre-
diction. The number of time points contributing to each FC estimate
was matched to the number of time points in each task condition. First,
GroupRest involved predicting using a randomly assigned (without
replacement) subject’s resting-state FC. It was important to use a single
other subject’s FC rather than group-averaged FC here because group-
averaged FC would have the unfair advantage (in terms of FC estimation
accuracy) of having more data for FC estimation. Further, this approach
was more analogous to the approach of Gratton et al. (2018), which this
set of analyses is based on. Second, GroupTask involved using a ran-
domly assigned (without replacement) subject’s task-state FC from the
same task as the to-be-predicted task activations. Third, IndivRest used
the to-be-predicted subject’s resting-state FC. Fourth, IndivTask used
task-state FC estimated from the first task run from the to-be-predicted
subject’s data. Thus, task-state FC was estimated from a distinct brain
state (run one) from the to-be-predicted task activations (run two).
Fifth, IndivTaskRun used task-state FC estimated from the second task
run from the to-be-predicted subject’s data. Thus, task-state FC was esti-
mated from the same brain state (run two) as the to-be-predicted task
activations (also run two). Predictions of task activations were compared
across these five sources of FC to make inferences about the likely contri-
butions of each form of FC to activity flow processes.

Data availability. All analyses used the publicly available Brain Activity
Flow (“Actflow”) Toolbox (https://colelab.github.io/ActflowToolbox/). The
code used to call functions in the Actflow Toolbox and run specific analyses
for this study is available here: https://github.com/ColeLab/TaskFCActflow_
release.

Results

Task-state FC better models task-evoked activity

flow than resting-state FC

We previously found that task-state FC across a variety of tasks
differs only minimally from resting-state FC (Cole et al., 2014).
Others have replicated this effect (Krienen et al., 2014; Gratton et
al., 2018). Further, we recently found that task-state FC
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correlation strengths are consistently lower than resting-state FC
among cortical regions (Fig. 4), likely driven by task-related local
inhibition causing variance and covariance quenching (Fig. 2; Ito
et al., 2020a). These results seemed to suggest that task-state FC
might contribute only minimally to task-related functionality.
Consistent with this conclusion, we found that task-evoked activa-
tion patterns could be accurately predicted without task-state FC in-
formation, using only estimated activity flow over resting-state
functional network architecture (Cole et al., 2016; Ito et al., 2017).
Here we sought to quantify the contribution of task-state FC to
task-evoked processes by directly comparing the prediction of task-
evoked activations using activity flow over task-state FC versus ac-
tivity flow over resting-state FC.

We began by characterizing cortex-wide changes in region-
to-region correlations from resting-state FC to task-state FC
(Fig. 4C), focusing for now on the cross-task average task-state
FC. We found that 68% of connections differed significantly
between rest and task (p < 0.05, familywise error corrected for
multiple comparisons). Only 4.4% of connections significantly
increased from rest to task, while 63.4% of connections signifi-
cantly decreased from rest to task. Thus, a significantly changed
connection was 14 times (63.4/4.4=14.4) more likely to have
decreased than increased from rest to task.

We next conducted an additional replication test, focusing on
testing the original activity flow over resting-state FC results
(Cole et al., 2016). The original results also used the HCP dataset,
but involved fewer subjects (here, N =176; before, N =100), a less
validated preprocessing stream (see Materials and Methods), did
not include a replication cohort (N=176), and focused on aver-
age activation across seven tasks rather than the 24 conditions
included in those tasks. Further, we developed some important
innovations relative to that original study, as follows: (1) a new
set of networks (Ji et al., 2019); (2) utilization of a better validated
set of regions (Glasser et al., 2016); and (3) a focus on predicting
the “response profile” of a neural population (condition-wise
prediction), rather than focusing solely on whole-brain activation
patterns. This final innovation can provide characterization of
population receptive fields, a central concept in neuroscience
(Wandell and Winawer, 2015), given that population receptive
fields (i.e., the set of stimuli and task conditions that elicits a
response in a neural population) can be inferred from condition-
wise activity patterns.

As in the previous study, task-evoked activation patterns were
predicted (using activity flow estimated over resting-state Pearson
correlation FC) with above-chance correspondence between pre-
dicted and actual activation patterns: r=0.51, f75) = 99, p < 0.00001
(Fig. 5A). This was true in the replication dataset as well (r=0.51,
ta7s) = 91, p < 0.00001), as well as for each of the 24 conditions sepa-
rately (each p < 0.00001). Condition-wise response profiles were also
predicted above chance (each p < 0.05, FWE corrected) for 100% of
the 360 cortical regions analyzed here (Fig. 5D; mean r=0.52, t(175) =
69, p<<0.00001; replication dataset: mean r=051, f;75 = 71,
P <<0.00001). These results confirm the informativeness of resting-
state FC, which forms the baseline for subsequent tests, for predicting
task-evoked activity flow.

As hypothesized, we found that task-state FC (with task-
evoked activations regressed out to avoid circularity in predic-
tions; see Materials and Methods) improved activity flow-based
predictions of task-evoked activations relative to resting-state
FC. Task-state FC was calculated for each task condition, for
each subject separately. Activity flow predictions and predicted-
to-actual comparisons were also conducted for each task condi-
tion and each subject separately (before averaging prediction
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Figure 4.

Resting-state and task-state FC are similar and mostly decrease from rest to task. 4, Resting-state FC correlations averaged across N = 176 subjects (discovery set). Network names

are listed on the right. B, Mean task-state FC correlations averaged across the 24 task conditions. Plotted on the same scale as in A. The similarity of the connectivity matrices in A and B (top
triangle) was r=0.90. (, Subtraction between data plotted in A and B, plotted on the same scale as in A. Decreased FC was apparent between all networks, with the exception of the frontopa-
rietal network (which had widespread small increases) and between the cingulo-opercular and default-mode networks. D, A cortical surface plot of the networks listed in A (Ji et al., 2019;

available at https://github.com/ColeLab/ColeAnticevicNetPartition).

accuracies across subjects). Activity flow predictions of task acti-
vation patterns using task-state correlation FC (Fig. 5C) resulted
in the following overall prediction accuracy: r=0.66, t175) = 133,
p<<0.00001. The direct contrast between activity flow predic-
tions with task-state versus resting-state FC was as follows: r
difference = 0.15, t(175) = 42, p < 0.00001. These results were con-
sistent with those of the replication dataset (r=0.66, t;75 = 123,
p <0.00001; r difference = 0.16, (;75) = 40, p < 0.00001), as well
as for each of the 24 conditions separately (each p < 0.00001).
Condition-wise response profiles were also predicted better
(each p < 0.05, FWE corrected) with task-state FC than resting-
state FC for 93% of the 360 cortical regions analyzed here (Fig.
5F; mean r difference = 0.12, t(;75) = 42, p < 0.00001; replication
dataset: mean r difference=0.13, f;75 = 38, p < 0.00001). These
results confirm our primary hypothesis: that task-state FC is more
informative regarding the paths of task-evoked activity flow than
resting-state FC.

Prediction accuracy improves when causal confounding is
reduced

Multiple regression is a standard statistical method that condi-
tions on other variables, such that multiple regression parameter
estimates indicate unique variance contributing to each predic-
tion. Thus, when used for FC estimation with each node (one-at-

a-time) being predicted by the time series of all other nodes, mul-
tiple regression reduces causal confounds (e.g., a third variable
causing a spurious association) in inferred associations (Cole et
al., 2016; Ito et al., 2017; Sanchez-Romero and Cole, 2020). We
used it here given the goal of improving FC-based causal infer-
ences (though limitations remain even when using multiple-
regression FC rather than Pearson correlation FC; Reid et al.,
2019; Sanchez-Romero and Cole, 2020). We hypothesized that
multiple-regression FC would provide more accurate task-
evoked activation predictions with activity flow mapping (using
both resting-state FC and task-state FC) than when using
Pearson correlation FC, because of the reduction in causal
confounds.

Before testing this hypothesis, we analyzed the change in mul-
tiple-regression FC values across rest and task (Fig. 6). The
resulting connectivity coefficients were much smaller and the
connectivity matrix was sparser when using multiple-regression
FC, consistent with multiple-regression FC reducing the number
of confounds relative to correlation-based FC (Reid et al., 2019;
Sanchez-Romero and Cole, 2020). We then averaged across these
24 FC estimates for analysis and visualization. The mean resting-
state FC and task-state FC were highly similar to each other
(r=0.94), as is the case for correlation-based FC (Cole et al.,
2014). We found that 2.6% of connections (915 connections)
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Task-state FC improves correlation-based activity flow models. A, Activity flow predictions using resting-state correlation FC across all nodes and conditions (r=0.51 similarity to

actual activations, similarity computed for each subject separately before averaging r values). Network colors correspond to those in Figure 4A. B, Actual activations (fMRI GLM 8 values) across
all nodes and conditions. C, Task-state correlation FC-based activity flow predictions across all nodes and conditions (r=0.66 similarity to actual activations). D, Activity flow prediction accura-
cies using resting-state correlation FC, calculated condition-wise separately for each node. FWE corrected for multiple comparisons using permutation testing. All nodes were statistically signifi-
cant above 0. E, Task-state correlation FC-based activity flow prediction accuracies. FWE corrected for multiple comparisons using permutation testing. All nodes were statistically significant
above 0. F, Task-state versus resting-state correlation FC-based activity flow prediction accuracy differences. FWE corrected for multiple comparisons using permutation testing; 93% of nodes

were statistically significant above 0 (nonsignificant nodes are gray).

differed significantly between rest and task (p < 0.05, familywise
error corrected for multiple comparisons). Only 0.28% of con-
nections (180 connections) significantly increased from rest to
task, while 2.28% of connections (1478 connections) significantly
decreased from rest to task. Thus, a significantly changed con-
nection was eight times as likely to have decreased than increased
from rest to task. The small FC differences for task-state FC rela-
tive to resting-state FC (even smaller than with Pearson correla-
tion FC) might make it surprising if using multiple-regression
task-state FC improves activity flow prediction accuracy. Yet, we
hypothesized that the increase in activity flow prediction accu-
racy would remain and perhaps even be enhanced given that ac-
tivity flows sum across many sources, potentially allowing for
large differences in activation prediction values despite small dif-
ferences in contributing connectivity values.

Using multiple-regression FC with resting-state data, task-
evoked activation patterns were again predicted with above-
chance correspondence between predicted and actual activation
patterns (r=0.46, t175) = 81, p < 0.00001; Fig. 7A). This was true
for each of the 24 conditions separately (each p<<0.00001).

Condition-wise response profiles were also predicted above
chance (each p < 0.05, FWE corrected) for 98% of the 360 corti-
cal regions analyzed here (Fig. 7D; mean r=0.46, t;75 = 99,
p <<0.00001). Note that the number of time points used for the
task-state FC results were matched for the estimation of resting-
state FC (see Materials and Methods).

As hypothesized, we also found with multiple-regression FC
that task-state FC improved activity flow-based predictions of
task-evoked activations relative to resting-state FC. Activity flow
predictions of task activation patterns using task-state multiple-
regression FC (Fig. 7C) resulted in the following overall predic-
tion accuracy: r=0.76, t175) = 146, p << 0.00001. The direct con-
trast between activity flow predictions with task-state versus
resting-state FC was as follows: r difference=0.31, t;75 = 94,
p<<0.00001. These results were consistent with those for
thereplication dataset (r=0.77, f475 = 149, p<<0.00001; r
difference = 0.31, t(175, = 95, p << 0.00001), as well as for each of
the 24 conditions separately (each p < 0.00001). Condition-wise
response profiles were also predicted better (each p < 0.05, FWE
corrected) with task-state FC better than resting-state FC for
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Multiple-regression FC is similar across rest and task, and mostly decreases from rest to task. A, Resting-state multiple-regression FC averaged across N =176 subjects (discovery

set). Network names are listed on the right. B, Mean task-state multiple-regression FC averaged across the 24 task conditions. The similarity between the matrices shown in A and B was
r=0.94. C, Subtraction between data plotted in A and B. Only 2.6% of connections were statistically different from 0. D, A cortical surface plot of the networks listed in 4 (Ji et al., 2019; avail-

able at https:/github.com/ColeLab/ColeAnticevicNetPartition).

100% of the 360 cortical regions analyzed here (Fig. 7F; mean
r=0.75, tu75 = 148, p <0.00001). The direct contrast between
task-state FC and resting-state FC-based condition-wise predic-
tions was as follows: mean r difference=0.27, t;75 = 106,
p <0.00001. These results further confirm our primary hypothe-
sis that task-state FC is more informative regarding the paths of
task-evoked activity flow than resting-state FC. A summary of
these and related results is included in Table 2.

These multiple-regression FC prediction accuracies were
higher than the correlation FC prediction accuracies. We quanti-
fied this improvement by comparing these prediction accuracies
statistically. The improvement in overall prediction accuracy
across all nodes and conditions using task-state FC with multi-
ple-regression FC (relative to correlation FC) was highly signifi-
cant (mean r difference=0.10, f75) = 34, p<0.00001). This
suggests that the influence of task-state FC changes on task-
evoked activations is more accurately described when accounting
for causal confounds using multiple-regression FC (Reid et al,,
2019; Sanchez-Romero and Cole, 2020).

Visualizing predictions across diverse cognitive domains on
brain surfaces

Three of the 24 task conditions were selected for detailed illustra-
tion because of the diversity of cognitive demands they

represented (Fig. 8). As with all other task conditions, these three
task conditions were significantly better predicted using task-
state FC than resting-state FC (all p < 0.00001). To reduce re-
dundancy with Figure 7, we used a different metric to quantify
prediction accuracy: average-then-compare R* prediction accu-
racies. This involves averaging activations across subjects before
comparing predicted and actual activation patterns, then quanti-
fying similarity using R* scores (Table 1). R* scores were used
such that the scale of the values was taken into account, not just
the unscaled pattern similarity quantified using Pearson correla-
tions. Average-then-compare was used so predicted-to-actual
similarity reflected the similarity of the group-averaged values
visualized in Figure 8. However, note that it is more accurate to
compare at the individual-subject level before group averaging
the similarity values, as was done for all other analyses. This is
because of individual-specific activations and FC being taken
into account, rather than blurring activity and connectivity pat-
terns across individuals before predicted-to-actual comparison.

The role of task-state FC decreases versus increases in
activity flow predictions

A potentially counterintuitive aspect of task-state FC estimates is
their tendency to decrease relative to resting-state FC estimates
(Fig. 2). Here we sought to determine whether these decreases
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are functionally meaningful. Given that most statistically signifi-
cant task versus rest FC changes decreased from rest to task, and
yet task-state FC improved activity flow prediction accuracy
overall, it is likely that the decreases played a prominent role in
improving activity flow prediction accuracies. We sought to bet-
ter establish this possibility using a lesioning approach—selec-
tively removing connections of interest so as to quantify their
importance for prediction accuracy.

Task-state multiple-regression functional connections that
decreased from rest were lesioned (on a subject-specific and
task-specific basis) by setting those connections to 0. We then
conducted activity flow mapping with all 360 nodes and 24 task
conditions. Using FC-decrease lesioned models, we found that
prediction accuracy reduced to r=0.48 (from r=0.76 without
lesioning; r difference =0.29, t(;75) = 59, p < 0.00001). This sug-
gests that rest-to-task FC decreases were important for task acti-
vation prediction, consistent with the larger number of rest-to-
task FC decreases relative to increases.

We also found that task-state FC increases from rest were
functionally important. Using FC-increase lesioned models, we

found that prediction accuracy reduced to r = —0.20 (from
r=0.76 without lesioning; r difference=0.96, t; 75 = 87,
p<<0.00001). Further, the FC-increase lesioned model per-
formed significantly worse than the FC-decrease mode (r=0.48
vs r = —0.20; r difference =0.67, t175 = 50, p<<0.00001). This
result confirmed the functional importance of rest-to-task
increases in FC, while also revealing that FC increases have a
larger impact of task activation prediction accuracy than FC
decreases. This is despite the smaller number and amplitude of
statistically significant increases relative to decreases.

Note, however, that we did not restrict our lesioning to statisti-
cally significant FC changes. Rather, all connections were considered
so as to avoid biasing results to only those FC changes that are con-
sistent across subjects. An analysis of the connections lesioned in
these two models revealed that 50.2% of connections decreased from
rest to task, while 49.8% increased. Further, FC decreases changed
by 0.461 on average, while FC increases changed by 0.462 on aver-
age. These results revealed that, once results were not restricted to
statistically significant group-level FC changes, FC increases were
nearly as numerous and large in amplitude as FC decreases.
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Table 2. Summary of Pearson r and R* results
Task-state FC

Resting-state FC

Pearson r R Pearson r R
Overall 0.76 0.51 0.46 —0.29
Condition-wise 0.75 0.0+ 0.48 -1
Node-wise 0.77 0.48 0.46 —0.23
EMOTION:fear 0.76 0.52 0.41 —0.17
EMOTION:neut 0.76 0.51 0.38 —0.36
GAMBLING:win 0.87 0.73 0.52 —0.05
GAMBLING:loss 0.88 0.76 0.53 —0.05
LANGUAGE:story 0.67 0.05 0.31 —232
LANGUAGE:math 0.64 —0.16 0.27 —3.65
MOTOR:cue 0.68 0.43 0.53 0.21
MOTOR:If 0.59 0.29 0.37 0.00
MOTOR:rf 0.56 0.25 0.36 —0.01
MOTOR:Ih 0.57 0.26 0.37 —0.01
MOTOR:rh 0.55 0.23 0.34 —0.03
MOTOR:t 0.58 0.27 0.37 0.00
REASON..rel 0.90 0.80 0.56 0.11
REASON.:match 0.90 0.81 0.57 0.13
SOCIAL:mental 0.90 0.80 0.51 —0.13
SOCIAL:rd 0.89 0.78 0.53 —0.07
WMObk:body 0.68 0.42 0.46 0.08
WMObk:faces 0.72 0.48 0.40 0.02
WMobk:places 0.75 0.53 0.51 0.16
WMObk:tools 0.79 0.60 0.51 0.16
WM2bk:body 0.78 0.60 0.51 0.15
WM2bk:faces 0.78 0.59 0.42 0.04
WM2bk:places 0.72 0.47 0.47 0.11
WM2bk:tools 0.73 0.51 0.48 0.12

Pearson r and R” prediction accuracy assessment results are reported across task-state FC and resting-state
FC. Results comparing all predicted to actual activation values at once are included (“overall”), as well as
results comparing prediction accuracy across conditions for each node separately (“condition-wise”) and pre-
diction accuracy across nodes for each condition separately (“node-wise”). See Table 1 for descriptions of
Pearson r versus R and condition-wise versus node-wise predictions. Node-wise comparisons for each task
condition separately are included in the last 24 rows.

¥Mean condition-wise task-state FC R values were dragged down by regions with especially poor predic-
tions because of mis-specified scales. Since mis-specified scales affect R but not Pearson r values, poor scal-
ing of predictions can be detected when R? predictions are much worse than Pearson r predictions. We
found that 38 brain regions had R” values below —1.0, meaning the predictions were 100% worse than the
average activation across all task conditions for those regions. Notably, these same regions all had Pearson r
values >0 (mean r=0.43), demonstrating this was primarily a scaling issue. In contrast, 186 (of 360) brain
regions had R? >0.25, such that most brain regions exhibited overall accurate condition-wise predictions
even when taking scale into account.

The large number of task-state FC decreases (just over half of
FC changes) may appear counterintuitive because of the com-
mon intuition that as activity increases during task performance, so
too should FC, reflecting an increase in neural interactions during
tasks. We hypothesized that this intuition might more accurately
apply to activity flows (activations x FC), rather than FC alone.
Specifically, we expected that a large portion of activity flows would
be positive, possibly reflecting increases in neural interactions, de-
spite restriction to only FC decreases from resting state. This is pos-
sible because activity flows reflect activations (changes in activity
levels from interblock rest baseline) multiplied by connectivity, such
that even FC decreases (e.g., 0.25, down from 0.40) can be multi-
plied by a positive activation increase from resting baseline (e.g.,
0.30) to yield a positive activity flow (e.g., 0.25 x 0.30=0.075; Fig.
1C,D). As expected, we found that 50.001% of all nonzero activity
flows (over task-reduced connections) were positive. These results
suggest that a task-state FC decrease can nonetheless result in
increased activity in a distal region (via activity flow), despite activity
increases in one region having a smaller effect on the other (relative
to resting state).

The role of individual-specific factors in task-state FC
To this point, the task-state FC advantage has been shown when
activity flow predictions are computed in a subject-specific
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manner. Further, task-state FC has been computed using the
same task runs as the to-be-predicted task activations. We next
sought to quantify the impact of subject-specific FC (vs group
FC) and run-specific FC (vs FC from an independent run). Con-
firming the importance of these factors, a recent study of group
versus individual-subject FC indicated there are large effects of
subject-specific FC, and also of subject-specific task-state FC rel-
ative to subject-specific resting-state FC (Gratton et al., 2018).
That study quantified these effects by comparing whole-cortex
connectivity patterns across individuals and cognitive states,
such as assessing how similar the same subject’s versus other
subjects’ task-state FC patterns were. They found high similarity
between resting-state FC and task-state FC connectivity matrices
within subject (relative to between subjects), indicating a large
effect of subject-specific resting-state FC on specifying each sub-
ject’s task-state FC connectivity pattern. They also found that
these subject-specific effects were less prominent (relative to
group effects) for task activations (i.e., comparing whole-cortex
activation patterns) relative to FC. Since activity flow mapping is
a combination of both task activations and FC, the relative role
of subject-specific versus group effects in activity flow predic-
tions is unclear.

Based on the findings by Gratton et al. (2018), group FC was
defined as other subjects’ FC. Thus, the effect of group (nonindi-
vidualized) FC was quantified by using a randomly assigned
(without replacement) subjects’ FC for each subject’s activity
flow prediction. It was important to use other individual subjects’
FC, rather than group-averaged FC, to control for the total
amount of data going into the FC estimates when comparing
group versus individualized FC effects.

We compared the effects of the following three factors: group
versus individual, rest versus task, and same versus different task
run. This revealed statistically significant (all p < 0.00001) effects
for all three factors, showing increases for individual, task, and
same-run factors (Fig. 9). This was the case for both Pearson cor-
relation (Fig. 9A) and R* (Fig. 9B) assessments of activity flow
prediction accuracy. The largest effect on activity flow prediction
accuracies was from individualized task-state FC (Fig. 9C). This
effect (R* = 0.40) was several times larger than the effect of indi-
vidualized rest/intrinsic FC (R? = 0.13), which can be thought of
as a baseline (e.g., because of lower overall metabolic demand in
the brain during resting state (Gusnard et al., 2001)). This sug-
gests (consistent with Gratton et al., 2018) that individualized
task-state FC reconfigurations play a large role in shaping task
activations. Note that the individualized nature of task-state FC
may help explain why there is a large effect of task-state FC on
activity flow prediction accuracy despite there being only small
group-level differences in task-state FC relative to resting-state
FC (r=0.94 similarity between group-level resting-state and
task-state FC matrices; Fig. 6A,B).

A notable discrepancy in the results is the consistently higher
R? values in Figure 9B compared with Table 2, especially for the
resting-state-FC-based predictions (—0.29 in Table 2 vs >0.1 in
Fig. 9B). This is despite half the data used per prediction in
Figure 9B (one run per task) relative to Table 2 (two runs per
task). We hypothesized that this was because of overfitting to
noise in the multiple-regression FC estimates, which was likely
substantially reduced in the Figure 9B analysis because of the use
of fewer principal components (greater regularization) in the
principal components regression step. This reduction in the
included number of principal components was by necessity
(given fewer data points than regressors; see Materials and
Methods) but may have nonetheless improved the generalization
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Figure 8. Visualizing three example task conditions across diverse cognitive domains. These values are all present in Figure 7—three of the columns from the matrices shown in Figure 7A-(—but
are visualized here on cortical anatomy. R values are based on the average-then-compare approach, quantifying the similarity of what is being visualized (i.e., group-level rather than individual-level sim-
ilarity). The average-then-compare approach resulted in higher accuracies than the compare-then-average approach used in Table 2 (and elsewhere; see Table 1 for dlarification on average-then-compare
vs. compare-then-average approaches). A, Activations for the motor task, left-hand movement condition is shown. Note the right somatomotor activations corresponding to the left hand movement,
which is most prominent for the actual and task-state FC-based predictions. Also note the scale difference for resting-state FC predictions, which contribute to R (not Pearson correlation) values. B,
Activations for the language task, story comprehension condition. Note the left-lateralized language network activation pattern in all three maps. €, Activations for the working memory task, two-back
face stimuli condition. Note the larger improvement in group-level prediction accuracy in this task condition relative to the motor and language conditions. It will be important for future research to iden-

tify factors underlying these task condition differences.

of the regression weights by removing noise variance from the
data before the multiple-regression fitting step. Confirming this,
we found that R* increased from —0.29 to 0.38 when everything
was identical to the analysis in Table 2 (resting-state FC overall
R?) except that half of the principal components was used
(matching the number of principal components used in Fig. 9B).
This demonstrates that exploring the role of regularization in ac-
tivity flow-based predictions will be important for future
research (e.g., using cross-validation to optimize the number of
principal components). Importantly, using this more optimal

regularization also improved the task-state-FC-based prediction
from 0.51 (Table 2) to 0.60. This demonstrates that regulariza-
tion also improves task-FC-based predictions. Note that the low
average R* performance for condition-wise task-state-FC-based
prediction (Table 2) was also improved with the increased regu-
larization (from R* = 0.01 to R* = 0.19).

Task-general FC also improves prediction accuracy
We next sought to determine whether task-state FC estimates
needed to come from the same task as the to-be-predicted task
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iance in the to-be-predicted activity pattern explained by the prediction. The red lines indicate baselining to quantify the relative effects in C. ¢, Same as B, but baselined (as indicated in B) to
highlight the relative effects and normalized such that all values add up to 1. This facilitates the interpretation of the role of intrinsic, individual, task, and task run-specific factors in producing
task activations. These normalized R” values can be interpreted as the proportion of the explained variance (in the IndivTaskRun results) contributed to by each factor. D, Detailed descriptions

of the FC sources.

activations to improve predictions. Instead, it might be that any
(or most) task states provide a similar advantage relative to rest-
ing-state FC. This would be consistent with observations that
many task-state FC changes from resting-state FC generalize
across task states (Cole et al,, 2014; Schultz and Cole, 2016).
Further, using task-general FC (connectivity estimated by con-
catenating time series from multiple task states) could have a
benefit to prediction accuracy based on the increased number of
time points going into the FC estimates, given limited data from
any single task. We computed task-general FC simply as multiple-
regression coefficients calculated across all task runs. We avoided
circularity by removing mean evoked responses from each task con-
dition (as with task-specific FC estimation), as well as by excluding
the time points during the to-be-predicted task condition. Thus, the
inference was similar to using resting-state FC for activity flow

mapping, since the connectivity models were based on a brain state
independent of the to-be-predicted task condition.

Consistent with our hypothesis that task-general FC carries
some of the same benefits as task-state FC, we found that using
task-general FC increased prediction accuracy relative to using
resting-state FC (matched for the number of time points). The
overall prediction accuracy (across all nodes and task conditions)
with task-general FC was r=0.90 (t;75 = 156, p<0.00001),
while the same analysis with resting-state FC yielded r=0.87
(t7s) = 145, p<0.00001). Comparing the two approaches, the
mean r difference =0.03 (t175 = 33, p<<0.00001). Condition-
wise response profiles were also predicted to be significantly
above chance with task-general FC (mean r=0.89, t;75 = 167,
p<<0.00001) and resting-state FC (mean r=0.87, t75 = 27,
P <0.00001). These condition-wise response profile predictions
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were significantly better (each p << 0.05, FWE corrected) with
task-general FC than resting-state FC for 41% of the 360 cortical
regions (mean r difference = 0.02, t(;75) = 27, p << 0.00001). These
results demonstrate a small but reliable benefit to using task
(rather than rest) data to estimate FC, even if the task data come
from task conditions other than the one being modeled.

It is possible that not all task conditions improved activity
flow prediction accuracy for every other task condition. For
instance, two very distinct tasks might actually bias task-state FC
away from the correct relationship between brain regions during
each task (relative to resting-state FC). We tested this possibility
by iteratively using the task-state FC of each task condition
for predicting whole-cortex brain activity patterns for each task
condition. This produced a state-generalization matrix using
task-state FC (Fig. 10A). All task conditions could be used indi-
vidually to predict all other task conditions above chance (mean
r=0.49, tuzs = 19, p<0.00001). The same was found using
time-matched resting-state FC (mean r=045, ti75 = 30,
p < 0.00001; Fig. 10B). Overall (averaged across all values in the
state-generalization matrices), task-state FC predicted task activa-
tions better than resting-state FC (r difference= 0.04, t76 = 4,
p=0.0004). However, when each condition pair was compared
separately (Fig. 10C), task-state FC did not better predict all condi-
tions individually. Indeed, there were cases of both significantly
(p < 0.05, Bonferroni corrected for multiple comparisons) increased
and decreased prediction accuracy (Fig. 10D).

The matched-condition cases (Fig. 10D, diagonal in the matrix)
and matched-task cases (conditions from the same task) were uni-
versally higher for task-state FC. We further found that the overall
pattern of prediction accuracy differences was correlated with
whole-cortex task activation pattern similarities (Fig. 10E; r=0.61,
tazsy = 95, p<< 0.00001). This was also the case (but less so) for
task-state FC pattern similarities (Fig. 10F, r= 0.21, f7s5 = 39,
P < 0.00001). Similarity between tasks was quantified using Pearson
correlations, between 360-length vectors (activations for all regions)
in Figure 10E and 129240-length vectors (multiple-regression FC
among all regions) in Figure 10F. These results suggest that similar
task conditions (quantified as task activation pattern similarity) bet-
ter describe activity flow routes for each other than dissimilar task
conditions. This was further confirmed by comparing predictions
between task conditions with positive task activation correlations
(mean r=0.041) versus tasks conditions with negative task activa-
tion correlations (mean r = —0.046) directly (r difference = 0.087,
ta7s) = 32, p < 0.00001).

The role of amount of data used for FC estimation

For most analyses, we restricted the amount of data used for esti-
mating resting-state FC to the amount used for each task-state
FC estimate. This controlled for the amount of data as a factor,
making for a fairer comparison between the methods. However,
there is often more resting-state data available in fMRI datasets
than the 114 time points (82 s) available on average for each of
the 24 task conditions used here. We therefore next used the
entire amount of resting-state fMRI data available for estimating
resting-state FC (4780 time points; 57 min).

As expected, task-evoked activation patterns were better pre-
dicted with more resting-state fMRI data used for estimating
multiple-regression FC. Predicted-to-actual activation pattern
similarity across all nodes and task conditions (r=0.89, t75) =
166, p < 0.00001). This was significantly higher than when the
amount of data was matched to the task conditions (time
matched; r difference =0.31, 175y = 94, p < 0.00001). The mean
R* was 0.78, meaning 78% of the activation pattern variance was
accurately predicted on average. This was substantially larger
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than the R* of —0.29 with the time-matched results. A positive r
value along with a negative R> value suggests that there was a
scaling issue with the time-matched resting-state FC results (see
Table 1).

These results demonstrate that much of the predictive advant-
age of task-state FC is present with low amounts of data. This
likely reflects the fact that prediction has an upper bound (here
r=1.0), which will naturally reduce differences between predic-
tive methods as they approach that upper bound. We next
sought to test whether there was still a task-state FC advantage
with larger amounts of data. A task-general approach was used
to allow for more task data, but using all task data (including the
to-be-predicted task) this time to include even more data. We
varied the amount of rest and task-general data across 5, 10, 20,
and 30 min of data. Both resting-state FC and task-general FC
predictions accuracies increased significantly (all p < 0.00001)
with each incremental increase in data (Fig. 11). An ANOVA
indicated there was a main effect of the amount of data (F3) =
9021, p<<0.00001), a main effect of FC state (F;y = 1449,
p<<0.00001), and an interaction between the amount of data
and FC state (F(; 3y = 46, p <0.00001). The interaction reflected
the reduction in the task-general FC advantage relative to rest-
ing-state FC as the amount of data increased. Importantly, how-
ever, task-general FC predictions were significantly better at all
amounts of data (all p < 0.00001), including the highest amount
of data (r=0.91 for task vs r=0.86 for rest). These results dem-
onstrate that the task-state advantage over resting-state FC for
activity flow predictions remains regardless of the amount of
data, though the task-state FC advantage is naturally reduced
with high amounts of data as the maximum possible prediction
accuracy is approached.

Controlling for potential spatial smoothness confounds

It is thought that fMRI BOLD data have an inherent smoothness
that partially reflects the spatial properties of vasculature rather
than neural activity (Lee et al.,, 1995; Menon and Kim, 1999).
This smoothness is thought to be somewhere between 2 and 5
mm (Malonek and Grinvald, 1996; Logothetis and Wandell,
2004). The prior results might have been biased by this effect,
given that the edge of each region is within 2 mm of the edge of
nearby regions, introducing potential circularity in the prediction
accuracies (Kriegeskorte et al., 2009; Cole et al., 2016).

We repeated the main analyses reported above with this bias
removed. This was done by excluding all parcels with any vertices
within 10 mm of each to-be-predicted region from the set of pre-
dictors (see Materials and Methods). We chose 10 mm to remain
conservative, given uncertainty regarding the degree of vascular-
driven smoothness of fMRI signal at any given location. Results
were highly similar with this modification, despite including fewer
predictors. Specifically, as hypothesized, we again found with mul-
tiple-regression FC that task-state FC improved activity flow-based
predictions of task-evoked activations relative to resting-state FC
(when using task-state FC: r=0.74, t(;75) = 139, p < 0.00001; when
using resting-state FC: r=0.39, t(;75) = 73, p < 0.00001). The direct
contrast between activity flow predictions with task-state versus
resting-state FC was: r difference =0.35, t;75 = 99, p < 0.00001.
These results further confirm our primary hypothesis that task-
state FC is more informative regarding the paths of task-evoked
activity flow than resting-state FC.

Assessing prediction accuracy relative to repeat reliability
(the noise ceiling)

A common approach for assessing the performance of predictive
models is to compare predictions to the repeat reliability of the
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Figure 10.  Activity flow routes are better described by similar task conditions. 4, Generalization of the task-state FC for each condition was tested across the whole-cortex task activation pat-
tern for each condition, quantified by Pearson correlation r values. Al cells of the matrix were significantly >0; p << 0.05 Bonferroni corrected for multiple comparisons. B, Identical to A, but
with resting-state FC used instead of task-state FC. The number of time points going into each FC estimate was matched to the task-state FC estimates. Again, all cells of the matrix were signif-
icant; p << 0.05 Bonferroni corrected. Variation along the y-axis reflects the effect of the amount of time contributing to each FC estimate, while variation along the x-axis reflects the predict-
ability of task activation patterns. C, Subtraction of the matrix in B from the matrix in A. D, Thresholded version of the matrix in C; p << 0.05 Bonferroni corrected. E, Similarity of task
activation patterns across each pair of task conditions. Pearson correlations using whole-cortex activation patterns. F, Similarity of task-state FC patterns across each pair of task conditions.

Pearson correlations across whole-cortex multiple-regression FC matrices.
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results excluded to improve legibility of the other results.

data, indicating how far the prediction accuracies are from the
theoretical limit (the “noise ceiling”; Naselaris et al., 2011; Nili et
al.,, 2014). We reran the main analysis above (comparing predic-
tions using multiple-regression FC with task vs rest data) but
built the activity flow models using the first task run and testing
prediction accuracy based on task activations from the second
task run. This was equivalent to a double cross-validation, with
both the to-be-predicted region held out (as with standard activ-
ity flow mapping) as well as holding out the data used for esti-
mating activations and FC of all regions. Another advantage of
this approach was to better equate the resting-state FC estimates
and task-state FC estimates, since (unlike task-state FC) resting-

E=

with task-state FC were successful despite using half
the data and predicting task activations in a differ-
ent fMRI run (mean r=0.40, tg75 = 57, p<
0.00001). Importantly, the task-state FC boost to
prediction (relative to resting-state FC) remained
(mean r difference =0.13, £175) = 38, p << 0.00001).
Condition-wise response profiles were also pre-
dicted better (each p << 0.05, FWE corrected) with
task-state FC rather than resting-state FC for 48%
of the 360 cortical regions analyzed here (mean r
difference = 0.09, t;75 = 31, p<0.00001). These
results demonstrate that the increase in prediction
accuracy when using task-state FC versus resting-
state FC was robust to predicting data in a separate
task fMRI run.

Activity flow prediction accuracy increases with the amount of data contributing to FC estimates.
A, Prediction accuracies reported as Pearson correlations, collapsed across all 360 nodes and 24 task conditions.
Task data were included from all 24 task conditions, similar to the prior task-general analyses but also including
the to-be-predicted condition (to include more data). B, The same results reported as unscaled R? (not ) val-
ues, which can be interpreted (once multiplied by 100) as the percentage of variance of the to-be-predicted ac-
tivity pattern. These values range from negative infinity to 1, with the negative values quantifying how much
worse the predictions are than predicting the mean of the data. C, The same results as in B, but with the 5 min

Discussion

The functional relevance of task-state FC has
recently been called into question, based on the
small size and number of task-related FC changes
from resting-state FC (Cole et al., 2014; Krienen et
al,, 2014; Ito et al,, 2020a) and the surprising efficacy
of using resting-state FC to predict task activations
(Cole et al., 2016; Tavor et al.,, 2016). Further, run-
ning counter to the common intuition that FC
should increase as neural populations interact dur-
ing task performance, FC tends to decrease as neural populations
increase their activity levels and interact more strongly (Cohen
and Maunsell, 2009; Ito et al., 2020a). We sought to test the pos-
sibility that—despite their counterintuitive nature—task-state FC
changes nonetheless play an important role in shaping cognitive
task activations. Supporting this conclusion, parameterizing net-
work models using task-state FC consistently improved (relative
to using resting-state FC) predictions of held-out cognitive task
activations. Further, the use of empirically derived network mod-
els provides mechanistic insight into how task-state FC
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influences brain function: by dynamically shifting the flow of ac-
tivity between brain regions to shape task activations in a con-
text-dependent manner.

This increase in prediction accuracy generalized across multi-
ple tests, demonstrating the robustness of this effect. First, cogni-
tive task activations across all 24 task conditions and 360 cortical
brain regions tested were better predicted when using Pearson-
correlation FC (the field standard) estimated during task per-
formance relative to resting state. Importantly, mean task-evoked
activations (ie., the to-be-predicted signals) were aggressively
removed before task-state FC estimation, eliminating analysis
circularity and leaving only spontaneous and induced activity to
contribute to task-state FC estimates (Cole et al., 2019). Despite
using such “background” connectivity (also termed “noise corre-
lations”; Norman-Haignere et al., 2012), the task-state FC esti-
mates nonetheless better described task activity flow than
resting-state FC. Notably, the vast majority of studies that have
suggested the high functional relevance of task-state FC because
of its correlation with individual differences in behavior (Greene
et al., 2018) did not remove task activation variance (already
known to be highly related to behavior), such that these previous
findings did not conclusively demonstrate functional relevance
of task-state FC. Second, using multiple-regression FC to reduce
causal confounds (Reid et al., 2019; Sanchez-Romero and Cole,
2020) further improved predictions of cognitive task activations,
suggesting (tentatively for now) the causal plausibility of activity
flow predictions using task-state FC. Third, task-state FC from
tasks other than the to-be-predicted task also provided a boost in
activation prediction accuracy, though it did not provide as
strong a boost in accuracy as when the same task was used.

The present results are consistent with a variety of studies
showing that, despite their small size and number, task-related
FC changes nonetheless reliably differ from resting-state FC
(Cole et al., 2014; Krienen et al., 2014; Gratton et al., 2018). This
reliability across time and also (to some extent) across subjects
suggests there may be an important functional role for task-state
FC. Importantly, we also found that individual differences play a
large role in the task-state FC boost in activation prediction accu-
racy. This is consistent with results showing that task-state FC
changes are largely subject specific (Gratton et al., 2018). This
suggests that group-averaged task-state FC results will always
partially mischaracterize task-state FC changes, and that individ-
ualized characterization (and/or characterization of individual
variation) will be especially important in future work. Note that
(unless noted otherwise) the activity flow mapping results were
based on individualized FC and activations, with predicted-to-
actual comparisons made before group averaging.

The present results advance our understanding of task-state
FC by mechanistically simulating how these estimated connec-
tions may support task-evoked activations. This is an advance
because of theoretical and mechanistic uncertainties regarding
task-state FC, which contrasts with theoretical and mechanistic
certainties regarding task-evoked activations. For instance, acti-
vations are known to cause perception, action, and cognition (e.
g., via transcranial magnetic stimulation or intracranial stimula-
tion; Valero-Cabré et al., 2017). There is less mechanistic cer-
tainty regarding fMRI-based activations relative to neural spike
activations (i.e., increases in spike rate), yet it is well established
that neural spike activations can cause fMRI activations
(Logothetis et al., 2001; Lee et al., 2010). Supporting this interpre-
tation of fMRI activations, many highly replicated fMRI activa-
tions are consistent with extremely well established causal
mechanisms (based on over a century of evidence from more
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invasive approaches), such as activations in primary motor cor-
tex during motor action (Yokoi et al., 2018), primary visual cor-
tex during visual perception (Wandell and Winawer, 2015), and
primary auditory cortex during auditory perception (Striem-
Amit et al,, 2011). Yet fMRI is known to be sensitive to other fac-
tors in addition to spiking activity, such that spikes cannot be
inferred with certainty based on fMRI observations. Including
nuisance regression to remove other signals that fMRI is sensitive
to (e.g., physiological artifacts), as we have here, can help with
this kind of inference, however.

Relative to activations, little is known regarding the mecha-
nisms underlying FC, such as the task-related changes in correla-
tions/regressions investigated here. In the nonhuman animal
literature, task-state FC is typically termed noise correlation,
because they are calculated (as we have here) as covariance above
and beyond the “signal”: cross-trial mean task-evoked activa-
tions. It is well known that noise correlations between neurons
tend to decrease from rest to task (Cohen and Kohn, 2011), and
that this tends to increase the information capacity of neural
populations via making neural responses more distinct from
each other (Averbeck et al., 2006; Cohen and Kohn, 2011). We
recently showed that such task-related decreases in correlation
generalize to correlations between brain regions (not just indi-
vidual neurons) in both monkey spiking data and human fMRI
data (Ito et al., 2020a; Fig. 2). Beyond this abstract information
theoretic interpretation, however, it has been unclear whether
task-state functional connections (noise correlations) actually
contribute to cognitive/perceptual/motor functionality. Here we
provided evidence consistent with this possibility, given that
task-state FC better predicts task-evoked activations (which are
more directly and mechanistically related to cognitive/percep-
tual/motor functionality) than intrinsic FC.

We sought to improve theoretical insights into the mechanis-
tic role of task-state FC using the concept of activity flow.
Activity flow (as a theoretical construct) is the movement of ac-
tivity amplitudes between neural populations, which activity flow
mapping attempts to quantify. Since true activity flow involves
directionality and spatiotemporal precision not currently possi-
ble with fMRI, we previously validated its use with fMRI data
using neural mass simulations. We found that simulated fMRI
data, while imperfect, was quite accurate at predicting ground-
truth activity flows in the simulated data (Cole et al., 2016; Ito et
al., 2017). Standard neuroscience theory attributes the flow of
neural activity solely to action potentials flowing over axons,
which cause the release of neurotransmitters at synapses
(Hodgkin and Huxley, 1952). These neurotransmitters are then
thought to cause the BOLD signal via interactions with nearby
astrocytes and blood vessels (Attwell et al., 2010). Thus, standard
neuroscience theory provides a straightforward mechanistic
account of how activity flow relates to fMRI BOLD: local activity
changes, measured indirectly via BOLD fMRI, can be related to
each other via activity flows over long-distance connections
(action potentials over axons). However, fMRI BOLD is suscepti-
ble to artifacts and distortions because of spatiotemporal down-
sampling and other factors. We used rigorously validated data
preprocessing to reduce the impact of artifacts, while we relied on
well established theory and the validation simulations mentioned
above (which also involved spatiotemporal downsampling to sim-
ulate fMRI) to support our fMRI-based inferences. Notably, many
of the conclusions reached here were dependent on the extensive
spatial coverage (the entire neocortex), relatively high spatial local-
ization certainty (relative to, e.g., electroencephalography), along
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with moderately high temporal resolution (seconds not minutes)
afforded by fMRIL.

Conclusions must nonetheless be restricted to some extent
given the limitations of BOLD fMRI relative to ground-truth
spiking activity. For instance, the FC measures used do not
estimate causal directionality, such that the directions of esti-
mated activity flows were unknown. Notably, however, most
corticocortical connections are known to be bidirectional
(Markov et al., 2014). This suggests that most of the activity
flow predictions are at least partially correct under the assump-
tion of bidirectionality. Further, since resting-state FC (the base-
line for comparison) also had the directionality limitation, our
conclusions are likely unaffected by the lack of directional infor-
mation. Another limitation of BOLD fMRI is that it has an inher-
ent smoothness that partially reflects spatial properties of
vasculature rather than neural activity (Lee et al., 1995; Menon
and Kim, 1999). This effect is thought to be between 2 and 5 mm
(Malonek and Grinvald, 1996; Logothetis and Wandell, 2004).
We ruled this out as a major factor here by conducting a follow-
up analysis in which we removed all parcels within 10 mm of the
to-be-predicted activations from the activity flow-mapping
procedure.

Building on our recent nonhuman (and human) primate
study showing that most correlation-based functional connec-
tions decrease from rest to task (Ito et al., 2020a), we found that
most regression-based functional connections also decrease.
These results appear to run counter to the common intuition
that tasks should increase neural interactions overall. Activity
flow mapping adds insight here, however, since we found that
activity flow (activations x FC) often increases even as FC
decreases (Fig. 1C,D). Thus, the common intuition that neural
interactions (quantified as activity flows) often increase during
tasks relative to rest can stand, while acknowledging that most
functional connections (correlations and regressions) decrease
from rest to task states. Notably, our recent study (Ito et al,
2020a) suggested that these task-state FC decreases likely result
from neural populations being related via sigmoidal transfer
functions, suggesting the importance of future work examining
the estimation of task-state FC using nonlinear regression
approaches. Even if a single nonlinear function could account for
both resting-state FC and task-state FC, however, the insights
gained via changes in separate piece-wise linear estimates (as
done here; Fig. 2C) would remain valid.

In conclusion, we found strong evidence consistent with
task-state FC having a prominent role in neurocognitive func-
tions. This built on our prior work suggesting that intrinsic
brain connectivity (as measured by resting-state FC) has a
large role in neurocognitive functionality, by shaping cogni-
tive task activations (Cole et al., 2016; Ito et al., 2017; Mill et
al., 2020). We again quantified the likely contribution of con-
nectivity to cognitive task activations, finding that task-state
FC consistently improved the prediction of task activations
relative to resting-state FC. This suggests that task-state FC
likely has an important functional role despite changes from
resting state being small in size (Cole et al., 2014; Krienen et
al., 2014), and despite most of those (statistically significant)
changes being reductions in FC strength. This conclusion is
highly general, as cognitive task activations were better pre-
dicted across all 360 cortical regions and all 24 task conditions
tested. We anticipate these findings to facilitate future inter-
pretation of task-state FC effects, such as the interpretation of
task-state FC decreases in the context of increased activity, as
potentially reflecting overall increases in activity flow.
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