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Abstract

■ Cognition and behavior emerge from brain network interac-
tions, suggesting that causal interactions should be central to
the study of brain function. Yet, approaches that characterize
relationships among neural time series—functional connectivity
(FC) methods—are dominated by methods that assess bivariate
statistical associations rather than causal interactions. Such bi-
variate approaches result in substantial false positives because
they do not account for confounders (common causes) among
neural populations. A major reason for the dominance of
methods such as bivariate Pearson correlation (with functional
MRI) and coherence (with electrophysiological methods) may
be their simplicity. Thus, we sought to identify an FC method
that was both simple and improved causal inferences relative to

the most popular methods. We started with partial correlation,
showing with neural network simulations that this substantially
improves causal inferences relative to bivariate correlation.
However, the presence of colliders (common effects) in a net-
work resulted in false positives with partial correlation, although
this was not a problem for bivariate correlations. This led us to
propose a new combined FC method (combinedFC) that incor-
porates simple bivariate and partial correlation FC measures to
make more valid causal inferences than either alone. We release
a toolbox for implementing this new combinedFC method to
facilitate improvement of FC-based causal inferences.
CombinedFC is a general method for FC and can be applied
equally to resting-state and task-based paradigms. ■

INTRODUCTION

A goal of brain connectivity research is to estimate mech-
anistic network architectures that define functional inter-
actions between neural populations (e.g., brain regions).
Ideally, the recovered network can differentiate between
direct and indirect interactions, as well as the orientation
and strength of such interactions. A common strategy is
to collect brain signals from a set of neural populations
(termed “nodes” from here on) and compute a number
of statistical association tests on the signals to infer the
connectivity profile governing the set of brain nodes.

For brain signals collected using fMRI, the most popu-
lar method to estimate associations and define networks
is Pearson bivariate correlation. A significant bivariate cor-
relation coefficient between two nodes will imply a con-
nection or edge between those two nodes. This method
is fast to compute, every scientific software has a function
to do it, and straightforward statistical tests are available.
Nevertheless, for the task of recovering a connectivity
architecture, it has important limitations. This is espe-
cially clear from a causal inference perspective, which
provides a variety of well-developed concepts that are
useful for illustrating the limitations with typical func-
tional connectivity (FC) research (Reid et al., 2019;

Pearl, 2009; Spirtes et al., 2000). First, if two nodes are not
connected but both have a common cause (a confounder)
such as A ← C → B, where C is the common cause, A
and B will be correlated and a spurious or false-positive
edge will be defined between them (Figure 1A). False-
positive errors from common causes are costly for various
reasons; for example, after observing a spurious edge, a
researcher could end up investing in an experiment to af-
fect B by manipulating A, which clearly will result in no
observed effect and waste time and resources.
Second, if a bivariate correlation is observed between

two nodes A and B, it is not possible to determine if this
correlation was produced by a direct interaction A → B,
an indirect interaction through other nodes (a chain;
Figure 1B) such as A → C → B, or both a direct and an
indirect interaction. In this sense, edges obtained with
correlation are ambiguous about the direct or indirect na-
ture of functional interactions. In contrast to the com-
mon cause case above, in the presence of a causal
chain, an experiment manipulating A to affect B will have
the desired effect, yet information about the mechanism
through which A is affecting B will be incomplete.
Partial correlation has been suggested as an alternative

to correlation that alleviates the aforementioned prob-
lems (Smith et al., 2011, 2013; Figure 1A and 1B). Partial
correlation consists in computing the correlation between
two nodes conditioning or controlling on the rest of the
nodes in the data set. Thus, partial correlation reveals cor-
relations driven by variance shared uniquely by each pair
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of time series—relative to the set of included time series.
Intuitively, partial correlation detects any direct associa-
tion between two nodes after taking into account associ-
ations through indirect interactions or because of the
presence of a common cause. For example, for a causal
architecture A → C → B, the partial correlation of A and
B conditioning on C is zero, indicating no direct interac-
tion between A and B and thus no edge in the estimated
connectivity network. In the case of a common cause
structure A ← C → B, the partial correlation of A and B
controlling for C is also zero, and no edge between A
and B will be part of the estimated model. Conversely,
the presence of an edge between two nodes in the esti-
mated network will imply that the two nodes have a direct
interaction.
In the presence of chains and confounders, partial cor-

relation is a preferable alternative to correlation for the
goal of estimating a connectivity network, as the method
is able to differentiate between direct and indirect inter-
actions and avoid spurious edges (Figure 1A and 1B).
However, partial correlation has an important limitation;
for a causal structure A → C ← B, where C is a common
effect and A and B are unrelated (i.e., C is a collider), the
partial correlation of A and B conditioning on C will be
nonzero and thus a spurious edge between A and B will
be included in the inferred network (Figure 1C).
Importantly, such spurious association also arises when
conditioning on any other node that is an effect of a col-
lider (Pearl, 1986). This “conditioning on a collider” effect

is well known in the causal inference and machine learn-
ing literatures (Bishop, 2006; Hernán, Hernández-Díaz, &
Robins, 2004; Spirtes et al., 2000; Pearl, 1986), with appli-
cation to inferring causal directionality based on the prin-
ciple of testing for conditional independence (Chickering,
2002; Meek, 1995; Spirtes & Glymour, 1991).

An example may be helpful for understanding why
conditioning on a collider creates a spurious association
between two unrelated nodes. Assume that nodes A, B,
and C have two states, namely, active or not active, and
that for node C to be active, it requires both nodes A and
B to be active. A researcher who only analyzes data for
the states of node A and node B will reach the correct
conclusion that A and B are not associated. In other
words, information about the state of A does not provide
any information about the state of B, and vice versa.
However, if the researcher also takes into account the
state of C, which formally entails controlling or condition-
ing on C, then information about the state of A together
with information about the state of C will provide infor-
mation to correctly infer the state of B. For example, if A
is active and C is not active, then we can correctly infer
that B is not active. This implies that node A and node B
will be associated conditionally on node C. The above
example assumes discrete variables, but the phenome-
non equally holds with continuous variables.

In the presence of a collider structure A → C ← B, cor-
relation (which does not condition on any other node)
will correctly infer the absence of an edge between A
and B, whereas partial correlation, because of condition-
ing on the collider C, will incorrectly infer a spurious
edge between A and B (Figure 1C).

The behavior of correlation and partial correlation re-
garding confounders, colliders, and chains suggest the
possibility of combining the inferences from both
methods to minimize the presence of false-positive edges
and, at the same time, disambiguate between direct and
indirect interactions.

We recently proposed an approach (Reid et al., 2019) to
combine bivariate correlation and partial correlation to
improve causal inferences, which is developed and tested
for the first time here. The basic idea underlying the
approach was briefly mentioned as a possibility by Smith
(2012) and was inspired by existing methods that use con-
ditional independence to infer causality (Smith, 2012;
Spirtes et al., 2000). The approach involves using partial
correlation to estimate an initial connectivity network,
followed by checking if any of those connections have a
bivariate correlation coefficient that is zero. A zero corre-
lation will indicate the possible presence of a spurious as-
sociation because of conditioning on a collider, and thus
the corresponding edge will be deleted from the initial
network. The partial correlation step is intended to avoid
spurious edges from confounders and chains, whereas the
bivariate correlation step is meant to avoid spurious edges
from conditioning on colliders. We refer to this approach
as “combined FC method” or combinedFC.

Figure 1. The pattern of spurious causal inferences for bivariate and
partial correlations. Switching from correlation to partial correlation
improves causal inference (but is not perfect). We propose integrating
inferences from both correlation and partial correlation, which we
predict will produce further improvements to causal inferences. Red
lines indicate spurious causal inferences. Note that, in the case of a
collider, when A → C and B → C are positive, then the spurious A–B
connection induced by partial correlation will be negative (this
becomes relevant in the Results section; see also Figure 6).
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Properly, spurious connections arising from con-
founders, colliders, and chains are not specific problems
of bivariate correlation and partial correlation but are
present for any method that tries to infer a causal mech-
anism from statistical associations (Spirtes et al., 2000).
Measures such as mutual information and conditional
mutual information, for example, will produce spurious
edges in the presence of a confounder or a collider, re-
spectively. Here, we focus on linear bivariate correlation
and partial correlation because they are two of the most
used methods to infer brain connectivity from fMRI data
(Reid et al., 2019; Cole, Ito, Bassett, & Schultz, 2016;
Ryali, Chen, Supekar, & Menon, 2012; Marrelec et al.,
2006). Similar considerations apply to all brain measure-
ment methods, such as EEG, magnetoencephalography,
or multiunit recording.

We implement combinedFC and compare its accuracy
to bivariate correlation and partial correlation using sim-
ulations under different conditions. We then apply the
three methods to empirical fMRI data from the Human
Connectome Project (HCP; Van Essen et al., 2013) to il-
lustrate the differences between the recovered FC net-
works. This demonstrates that it matters in practice
which method is used. For reproducibility, results are
available as a Jupyter notebook at github.com/ColeLab/
CombinedFC.

Here, we applied combinedFC to resting-state fMRI,
but the method can also be used to recover connectivity
networks from task-based fMRI. Formally, combinedFC is
a general method that can recover FC networks as long as
there are statistical conditional independence measures
appropriate for the associational (linear or nonlinear)
and distributional (e.g., Gaussian) features of the data un-
der consideration.

METHODS

CombinedFC builds an initial connectivity network using
partial correlations to avoid spurious edges produced by
confounders and causal chains and then removes spuri-
ous edges arising from conditioning on colliders if the
corresponding bivariate correlations are judged as zero.
We implement the method as follows: Partial correlations
are computed using the inverse of the covariance matrix
for the set of variables of interest, also known as the pre-
cision matrix P. The partial correlation coefficient for two
nodes’ time series A and B conditioning on C, the set in-
cluding all nodes in the data set except A and B, is equal
to: rAB|C = −PAB / sqrt(PAAPBB), where sqrt() indicates
the square root function and PAB indicates the entry for
nodes A and B in the precision matrix. This is mathemat-
ically equivalent to computing the bivariate correlation of
each pair of nodes’ time series after regressing out (con-
trolling for) all other nodes’ time series. If the data set
has more datapoints than variables, computing the preci-
sion matrix is a computationally efficient way to obtain

the partial correlations for all the pairs of variables in
the data set.
To determine statistical significance, the partial corre-

lation coefficients rAB|C are transformed to the Fisher z
statistic Fz = [tanh−1(rAB|C) − tanh−1(rAB|C

Ho )]sqrt(N −
|C| − 3), where rAB|C

Ho is the partial correlation coefficient
under the null hypothesis, N is the number of datapoints,
and |C| is the number of nodes in the conditioning set
C. The Fz statistic has a distribution that approximates a
standard normal with a mean of 0 and a standard devia-
tion of 1 and is used in a two-sided z test for the null hy-
pothesis of zero partial correlation, rAB|C

Ho = 0, at a
selected α cutoff. For Fzα/2, the value corresponding to
the α cutoff in a two-sided z test, if Fz ≥ +Fzα/2 or Fz ≤
−Fzα/2, the partial correlation is considered significantly
different from zero and an edge between A and B is added
to the initial network with a weight equal to rAB|C.
To check for spurious edges caused by conditioning

on a collider in the partial correlation step, the bivariate
Pearson correlation coefficient rAB is computed for each
pair of connected nodes A and B in the initial network. In
contrast to the partial correlation step in which edges are
added to the network, in the correlation step, edges are
removed if rAB = 0. For bivariate correlation coefficients
rAB, the above formula for Fz reduces to Fz = [tanh−1

(rAB) − tanh−1(rAB
Ho)]sqrt(N − 3), because bivariate cor-

relation does not condition on other nodes, and so the
size of the conditioning set |C| = 0. A two-sided z test
for the null hypothesis of rAB

Ho = 0 is conducted at a cho-
sen α cutoff. For Fzα/2, the value corresponding to the α
cutoff in a two-sided test, if Fz ≤ +Fzα/2 or Fz ≥ −Fzα/2,
the bivariate correlation is considered not significantly
different from zero and the corresponding edge between
A and B is removed from the initial network.

Simulation Methods

The performance of combinedFC, partial correlation, and
correlation is tested using data generated from linear
models of the form X = WX + E, where X = {X1, X2,
…, Xv} is a vector of v variables, E = {E1, E2, …, Ev} is
a vector of v independent noise terms, and W is a matrix
of connectivity coefficients with diagonal equal to zero to
represent no self-loops. If the entry Wij ≠ 0, then the
model implies a direct causal interaction Xj → Xi; other-
wise, Xi and Xj are not directly connected.
To simulate data for a linear model, the above equation

can be expressed as X = (I − W )−1E, where I is the iden-
tity matrix and datapoints for the X variables are obtained
by specifying the coefficients of the connectivity matrixW
and datapoints for the E noise terms. A common strategy
is to sample noise terms E from a standard normal distri-
bution with a mean of 0 and a standard deviation of 1.
However, to simulate more realistic scenarios, it is possi-
ble to implement a pseudoempirical approach to define
the E noise terms and produce synthetic variables X that
better resemble the empirical data of interest. The
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approach consists in selecting an empirical data set from
the domain of interest and randomizing the variable la-
bels and each variable vector of datapoints individually,
with the aim of destroying existing associations while
keeping the marginal distributional properties of the em-
pirical variables. The newly randomized empirical vari-
ables are used as noise terms E and, together with W,
define synthetic datapoints for X by the above equation.
In these simulations, pseudoempirical noise terms E
were built using fMRI resting-state data from a pool of
100 random participants of the HCP and parcellated into
360 brain cortex regions (Glasser et al., 2016; see subsec-
tion below).
The simulation of the coefficient matrix W consists in

the definition of a connectivity architecture (i.e., the non-
zero entries in W ) and the choice of coefficient values for
the nonzero entries. Two different causal graphical
models are used to define connectivity architectures.
The first model is based on an Erdos–Renyi process
(Erdős & Rényi, 1960) and produces architectures with
a larger proportion of confounders than colliders. In con-
trast, the second model is based on a power-law process
(Goh, Kahng, & Kim, 2001) and generates architectures
with a larger proportion of colliders than confounders.
These two models il lustrate the performance of
combinedFC in conditions in which partial correlation
will perform better than correlation and conditions
where the opposite is true.
The coefficient values for W were sampled from a uni-

form distribution with an interval from −1 to 1. To avoid
zero or close-to-zero coefficients, values in the interval
(−0.1, 0) were truncated to −0.1 and those in the inter-
val [0, +0.1) were truncated to +0.1.
We analyzed the performance of the methods across

simulations that vary in four parameters: number of data-
points = {250, 600, 1200}, number of regions = {50,
200, 400}, connectivity density or percentage of total
possible edges = {5%, 10%, 20%}, and α cutoff for the
significance of the two-sided null hypothesis tests =
{0.001, 0.01, 0.05}. When one parameter is varied, the
other three are fixed to the value in bold. For example,
in the simulations where the number of datapoints var-
ies, the number of regions is fixed to 200, the connectiv-
ity density is fixed to 5%, and the α cutoff value is fixed to
0.01.
To compare the performance of the three methods in

recovering the true connectivity architectures, we used
precision and recall as measures of effectiveness
(Rijsbergen, 1979). Precision is the proportion of true
positives or correctly inferred edges out of the total num-
ber of inferences: precision = true positives / [true pos-
itives + false positives]. Precision ranges from 0 to 1, and
a value of 1 implies no false positives (Figures 2B and
3B). Recall is the proportion of correctly inferred edges
out of the total number of true edges: recall = true pos-
itives / [true positives + false negatives]. Recall ranges
from 0 to 1, and a value of 1 implies no false negatives

(Figures 2B and 3B). Given that correlation and partial
correlation do not recover information about the causal
direction of edges, precision and recall only reflect the
accuracy of the methods to recover edges regardless of
their orientation. We instantiate 100 times each simulated
condition and report averages and standard error bars for
precision and recall across the runs.

Empirical fMRI Analysis Methods

For the pseudoempirical simulations described above
and for the empirical analysis, we use fMRI resting-state
data from a pool of 100 random participants from the
minimally preprocessed HCP 1200 release (Glasser
et al., 2013), with additional preprocessing following Ito
et al. (2019) and Ciric et al. (2017). HCP data were col-
lected in a 3-T Siemens Skyra with repetition time =
0.72 sec, 72 slices, and 2.0-mm isotropic voxels. For each
participant, four resting-state fMRI scans were collected,
each lasting 14.4 min, resulting in 1200 datapoints per
scan. The data were parcellated into 360 brain cortex re-
gions (180 per hemisphere) defined in Glasser et al.
(2016). Additional preprocessing on the parcellated data
included removing the first 5 datapoints of each scan, de-
meaning and detrending the time series, and performing
nuisance regression with 64 regressors to remove the
confounding effect of various motion and physiological
artifacts. No global signal regression was implemented.
Finally, the time series of the 360 regions were individu-
ally standardized to bring them to the same scale with a
mean of 0 and a standard deviation of 1. Specific details
about the nuisance regression are in Ito et al. (2019).

For the empirical fMRI data, we illustrate the use of
combinedFC in a group level analysis and compared its
result to bivariate correlation and partial correlation. We
only use the first resting-state session data (1195 data-
points × 360 regions) for each participant analyzed.
The goal of the group analysis is to obtain a connectivity
network reflecting group-average significant connections.
The group analysis for bivariate correlation and partial
correlations follows Smith et al. (2013). Let Ms for s =
{1, …, n} denote a group of n participants’ bivariate cor-
relation (or partial correlation) matrices and Mg the
group average connectivity matrix we want to infer.
First, each Ms is transformed into a Fisher z statistics ma-
trix Fs. Then, for each ij entry, we compute the group
average 1/n �s(Fij

s) and perform a two-sided one-sample
t test for the null hypothesis H0: 1/n �s(Fij

s) = 0. Finally, if
H0 is rejected at the chosen α value, the ij entry of the
group connectivity matrix Mg is defined as Mij

g = 1/n �s

(Mij
s); otherwise, Mij

g = 0.
For combinedFC, the group analysis starts by comput-

ing an initial partial correlation group-average connectivity
matrix Mg as above. Then, for each nonzero entry Mij

g ≠ 0,
we perform a two-sided one-sample t test for the null
hypothesis H0: 1/n �s(�ij

s ) = 0, where �ij
s is the Fisher z

transform of the bivariate correlation between node i

Sanchez-Romero and Cole 183

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/2/180/1862533/jocn_a_01580.pdf by guest on 09 April 2021



and node j for subject s. In other words, we want to de-
termine if the group-average bivariate correlation be-
tween two nodes is significantly different from zero or
not. As mentioned before, the correlation step looks to
remove connections with nonzero partial correlation
but zero bivariate correlation because that indicates a
possible spurious connection from conditioning on a col-
lider. So, if the H0 is not rejected at the chosen α value—
meaning that the group-average correlation is not

significantly different from zero—we remove the connec-
tion by setting Mij

g = 0; otherwise, we keep the initial
value of Mij

g.
An alternative approach for inferring if bivariate corre-

lations are zero (or close enough to zero that we consider
them to be null effects) is to use an equivalence test
(Lakens, 2017; Goertzen & Cribbie, 2010). Formally, it
is not appropriate to use nonsignificance to infer that
the null effect was true. This is clear in the case of high

Figure 2. Precision and recall for simulated networks with a larger number of confounders and chains than colliders. (A) An example of a five-node
network generated with an Erdos–Renyi process, with more confounders and chains than colliders. (B) Formulas for precision and recall based on
the sum of true-positive, false-positive, and false-negative inferred edges, relative to a true network. Results show average and standard deviation
across 100 instantiations. Four different parameters are varied independently: (C) number of datapoints = {250, 600, 1200}, (D) number of regions =
{50, 200, 400}, (E) connectivity density = {5%, 10%, 20%}, and (F) α cutoff for the significance test = {0.001, 0.01, 0.05}. In F, the values are plotted
in logarithmic scale for better visualization. When one parameter was varied, the other three were fixed at the value in bold.
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uncertainty (e.g., high interparticipant variance), because
even large correlations would be considered nonsignifi-
cant. Nonsignificance implies that we do not have suffi-
cient evidence of a correlation, not that we have strong
evidence that the correlation is zero. This is also clear in
the case of very small effects with a large sample size, in
which extremely small correlations are still considered
significantly nonzero. Significance in this case implies
that we have sufficient evidence of a correlation but that

correlation might be so small that it is not above zero in a
meaningful sense. For instance, rAB = .20 is such a small
effect size that only 4% of linear variance is shared be-
tween time series. Unlike nonsignificance in a two-sided
one-sample t test, equivalence tests allow one to properly
infer that the null effect is true by choosing a minimum
effect size of interest (e.g., we consider rAB to be zero, if
abs(rAB) < .20, where abs() is the absolute value func-
tion). Equivalence tests are very straightforward, simply

Figure 3. Precision and recall for simulated networks with a larger number of colliders than confounders and chains. (A) An example of a five-node
network generated with a power-law process, with more colliders than confounders and chains. (B) Formulas for precision and recall based on the
sum of true-positive, false-positive, and false-negative inferred edges, relative to a true network. Results show average and standard deviation across
100 instantiations. Four different parameters are varied independently: (C) number of datapoints = {250, 600, 1200}, (D) number of regions = {50,
200, 400}, (E) connectivity density = {5%, 10%, 20%}, and (F) α cutoff for the significance test = {0.001, 0.01, 0.05}. In F, the values are plotted in
logarithmic scale for better visualization. When one parameter was varied, the other three were fixed at the value in bold.
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using standard null hypothesis testing (e.g., a t test) to
determine if an effect is significantly closer to zero than
the chosen minimum effect size of interest. We imple-
ment the equivalence test in the group analysis as follows:
In an equivalence test to determine if a group-average
bivariate correlation is zero, two one-sided one-sample
t tests are conducted. First, FzL and FzU are defined as
the Fisher z-transformed values of the negative (lower
bound) and positive (upper bound) of a chosen mini-
mum bivariate correlation coefficient of interest—
minimum effect of interest. The lower-bound t test is a
right-sided test for the null hypothesis H0

L: 1/n �s(Fij
s) =

FzL, and alternative hypothesis HA
L: 1/n �s(Fij

s) > FzL. The
upper-bound t test is a left-sided test for the null hypoth-
esis H0

L: 1/n �s(Fij
s) = FzU, and alternative hypothesis HA

L:
1/n �s(Fij

s) < FzU. For a selected α cutoff, if both H0
L and

H0
U are rejected, the equivalence test concludes that sig-

nificantly FzL < 1/n �s(Fij
s) < FzU. This result implies that

the group-average bivariate correlation of node i and
node j is inside the bounds of the minimum effect of in-
terest and will be judged as zero. In combinedFC, this re-
sult implies setting Mij

g = 0, otherwise keeping the initial
value of Mij

g.
Code to implement combinedFC at the individual and

group levels is available as a toolbox at github.com/
ColeLab/CombinedFC.

RESULTS

Validating CombinedFC Using Simulations

As combinedFC benefits from the capacity of partial cor-
relation to avoid false-positive edges from confounders
and chains, as well as from the capacity of correlation
to avoid false-positive edges from conditioning on col-
liders, it is expected to have a lower number of false pos-
itives than either of the two methods alone. Consistent
with this, the results of all simulations show that
combinedFC has better precision than both bivariate
and partial correlations. As combinedFC starts with the
partial correlation connectivity network and does not
add any more edges, its number of true positives is the
same as for partial correlation, so any improvement in
precision relative to partial correlation necessarily comes
from a reduction in false positives. As expected, partial
correlation has a better precision than bivariate correla-
tion in the simulations from models with a large number
of confounders and chains (Figure 2), whereas bivariate
correlation precision is higher in simulations from
models with a large number of colliders (Figure 3).
CombinedFC precision is the highest for both types of
graphical models.

CombinedFC’s recall upper bound is determined by
partial correlation’s recall. CombinedFC true positives
are the same as partial correlation true positives, so any
reduction in recall relative to partial correlation comes
from an increase in the number of false negatives. An

increase in false negatives means that combinedFC is in-
correctly removing some true edges.
Because combinedFC is based on partial correlation

and bivariate correlation, increasing datapoints
(Figures 2C and 3C) will also have a positive impact on
precision and recall. We found that combinedFC preci-
sion and (to a larger degree) recall were improved by in-
creasing datapoints, likely because of more statistical
power to correctly detect the presence of true edges.
CombinedFC has a strong positive effect in precision

for all the number of regions we simulated (Figures 2D
and 3D). This effect diminishes to a degree in the larger
model we tested, possibly because of the fact that, in
larger simulated networks, there is a higher probability
that nodes with common causes, common effects, or in-
direct interactions are also directly connected, such that
combinedFC removes fewer false connections.
Figures 2E and 3E show an excellent precision im-

provement of combinedFC in sparse problems (low con-
nectivity density). This is expected because in sparse
causal architectures any two nodes have a higher proba-
bility of not being connected, while still potentially hav-
ing a common cause, a common effect, or an indirect
interaction such that combinedFC removes more false
connections. As the true causal architecture becomes
denser, the benefit in precision from combinedFC is re-
duced, because now—as with the simulations with a
large number of regions—there is a higher probability
that nodes with common causes, common effects, or in-
direct interactions are also directly connected such that
combinedFC removes fewer false connections.
Changes in recall and precision of combinedFC can be

achieved by changing the α cutoff for the significance
tests. Figures 2F and 3F show that in these simulations
a smaller α value improves the precision and decreases
the recall for combinedFC. In the opposite direction,
by choosing a larger α the hypothesis tests will be more
lenient increasing the recall (more true edges will be
judged significant) at the cost of a lower precision (more
false edges will be judged significant). When using
combinedFC the preference between precision or recall
is a decision that depends on the researchers’ goals.
Scientists generally tend to value precision over recall,
because false positives are thought to be more costly to
scientific progress than false negatives (Parascandola,
2010).
For the network inference problem, simple and multi-

ple linear regression can be used to obtain measures of
unconditional and conditional linear associations for a
node and a set of node regressors. This makes them
straightforward alternatives to partial correlation and bi-
variate correlation to implement combinedFC. In this
case, we would first compute the multiple regression of
each node on the rest of the nodes, for example, X1 =
β0 + β2X2 +…+ βvXv+ E1. Then, for each nonzero mul-
tiple regression coefficient βj ≠ 0, we would compute the
simple regression between the node and the corresponding
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regressor X1 = γjXj + E1. The simple regression coeffi-
cient γj is a measure of unconditional association and thus
an alternative to the bivariate correlation coefficient for
the collider check. If two nodes have a nonzero multiple
regression coefficient βj ≠ 0, but a zero simple regression
coefficient γj = 0, then we have evidence of a spurious
edge from conditioning on a collider. We applied a
combinedFC implementation with ordinary least squares
multiple linear regression and simple linear regression to
our simulations and obtained equivalent inference preci-
sion and recall to the ones of combinedFC with bivariate
correlation and partial correlation. This is expected given
the theoretical relationship between the methods. We
include this linear regression implementation of
combinedFC in the accompanying toolbox.

Applying CombinedFC to Empirical Resting-State
fMRI Data

We used the same pool of 100 HCP participants from the
pseudoempirical simulations to perform group analyses
and assess whether it mattered in practice which method
(bivariate correlation, partial correlation, or combinedFC)
is used in empirical fMRI data analyses. This also allowed
us to assess the relative performance of the methods as a
function of sample size and as a function of how false con-
nections are identified.
We began by measuring the sensitivity of the three ap-

proaches to increasing number of participants in the
group. Groups with 10, 40, 70, and 100 participants were
evaluated. For each case, the three FC methods were ap-
plied as described in the Methods section. A significance
cutoff of α = .01 was used for the significance tests of
correlation, partial correlation, and combinedFC, for all
group sizes.
Figure 4 shows the number of edges inferred by each

method (bivariate correlation excluded from visualiza-
tion) at each of the four group sizes analyzed. The num-
ber of inferred edges for all methods increased with the
size of the group. The results for bivariate correlation are

not plotted in Figure 4, because they are one order of
magnitude larger than for the other methods, but they
are included here for completeness: 45,120 edges (with
10 participants); 58,019 (40); 60,442 (70); and 61,206
(100). The results labeled as “CombinedFC nonsignifi-
cance” refer to combinedFC using nonsignificant correla-
tions for the collider check, as described in the Methods
section. As can be seen, the number of inferred edges for
this implementation of combinedFC is very similar to the
ones from partial correlation. One reason behind this re-
sult is that, in group analyses with high statistical power,
very small spurious bivariate correlations (e.g., rAB = .10)
may be judged significant and thus combinedFC will not
judge them as spurious edges from conditioning on a
collider.

As mentioned in the Methods section, an alternative
approach for inferring zero correlations is to use an
equivalence test. By choosing a minimum effect of inter-
est, an equivalence test allows us to make a significance
judgment of zero correlation and overcome the problem
of very small significant correlations described above for
the nonsignificance implementation. We applied
combinedFC with an equivalence test, choosing a mini-
mum bivariate correlation coefficient of interest of .2
and a significance cutoff of α = .01. Results are shown
in Figure 4 as “CombinedFC equivalence test.”
CombinedFC with an equivalence test inferred a smaller
amount of edges than combinedFC with the nonsignifi-
cance judgment. As the group size increases, the equiva-
lence tests gain more statistical power to correctly judge
the presence of zero mean group effects (Lakens, 2017),
and thus combinedFC becomesmore effective in removing
potential spurious edges from conditioning on colliders.

For illustration and comparison, we plotted in Figure 5
the connectivity networks for the 100-participants’ group
analysis. Connection weights represent mean values
across 100 participants. The network for combinedFC
with nonsignificance judgments is not plotted because,
as explained above and shown in Figure 4, the results
are very similar to partial correlation. The rows and

Figure 4. Empirical data
analysis comparing strategies to
identify false connections
because of colliders. Number of
inferred group edges for partial
correlation and combinedFC
implemented with
nonsignificant correlations and
with equivalence tests for the
collider check. Only the
equivalence test strategy
identifies more false
connections with a larger
sample size, consistent with
more data providing greater
evidence of no (or a very small)
bivariate correlation in these
cases. See text for results with
bivariate correlation.
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columns of the matrices are ordered according to 12
functional networks described in Ji et al. (2019).

In the 100-participant group analysis, correlation
(Figure 5A) produced a dense network with 61,206 signif-
icant edges (of 64,620 possible), whereas partial correla-
tion (Figure 5B) inferred a sparser model with 7815
significant edges (Figure 5D). This massive reduction in
inferred edges from using partial correlation likely re-
flects the widespread presence of confounders and causal
chains among brain regions. Partial correlation removes
false edges from confounders and indirect connections,
producing a brain connectivity network in which edges
between regions can be interpreted (under certain as-
sumptions) as direct connections.

It is worth noticing that the number of negative edges
in the partial correlation matrix increased to 2073 from
818 in the correlation matrix (Figure 5D). Two

unconnected nodes will have a negative spurious partial
correlation from conditioning on a collider if their con-
nectivity coefficients with the collider have the same sign.
In contrast, they will have a positive spurious partial cor-
relation if their associations have opposite signs (Reid
et al., 2019; Smith, 2012; Figure 6). Anatomical studies
in nonhuman primates have established that most long-
range cortico-cortical connections are positive (i.e., gluta-
matergic; Barbas, 2015), such that we can reasonably
assume that most true connections among brain regions
have the same sign (positive). This suggests that—assuming
fMRI data properly reflect underlying neural signals (Lee
et al., 2010)—most spurious partial correlations will be
negative. Consistent with the removal of spurious partial
connections caused by colliders, combinedFC (Figure 5C)
reduced the number of negative edges to 895, from the
initial 2073 in the partial correlation matrix (Figure 5D).

Figure 5. Comparison of bivariate and partial correlations with combinedFC using empirical resting-state fMRI data. Results for (A) bivariate
correlation, (B) partial correlation, and (C) combinedFC with equivalence tests. (D) Number of positive and negative inferred edges by each method.
Partial correlation removed a large number of positive edges and increased the number of negative edges relative to correlation. This increase may
come from spurious edges from conditioning on colliders with same-sign associations. Consistent with the removal of spurious partial connections
caused by colliders, combinedFC removed 57% of the negative partial correlations and ended up with a number of negative edges close to the one of
the bivariate correlation matrix, for which no spurious edges from colliders are present. (E) The 360 ROIs are ordered according to 12 functional
networks defined in Ji et al. (2019) using bivariate correlation: VIS1 = primary visual; VIS2 = secondary visual; SMN = somatomotor; CON =
cingulo-opercular; DAN = dorsal attention; LAN = language; FPN = frontoparietal; AUD = auditory; DMN = default mode; PMM = posterior
multimodal; VMM = ventral multimodal; ORA = orbito-affective.
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It is interesting that the final number of negative edges
in the combinedFC matrix is close to the number of neg-
ative edges in the bivariate correlation matrix, in which
no spurious edges from conditioning on collider are
present.
The group analysis reported in Figure 5 was repeated for

the same set of 100 participants but using the second
session of resting-state fMRI available in the HCP data set.
The results for the second session show a similar pattern
with 62,929 positive and 183 negative edges in the correla-
tion matrix (compared to 60,388[+] and 818[−] edges in
the first session); 5673 positive and 2072 negative edges in
the partial correlation matrix (5742[+] and 2073[−] in the
first session); and 4951 positive and 1005 negative edges in
the combinedFCmatrix (4921[+] and 895[−] edges in the
first session). These results show that partial correlation
and combinedFC recovered a more stable group connec-
tivity matrix across sessions in terms of number of positive
and negative edges, whereas the correlation matrices
differed by a larger amount across sessions, in both the
number of positive and negative edges.
Altogether, these findings confirm the benefit—relative

to either bivariate or partial correlation alone—of the
combinedFC strategy to detect direct connections be-
tween regions.

DISCUSSION

We have shown that combinedFC provides a strategy to
accurately recover connectivity networks by taking into ac-
count theway that causal relationships such as confounders,

causal chains, and colliders may produce spurious edges
when correlations and partial correlations are used sepa-
rately. Using a series of simulations varying the number
of datapoints, number of regions, connection density,
and significance cutoff, we showed that combinedFC
consistently improves the inference precision (reducing
false-positive edges) without considerable loss in recall
(increasing false-negative edges). We also presented sim-
ulations of graphical models with most confounders, for
which partial correlation performs better than bivariate
correlation, and models with most colliders, for which bi-
variate correlation performs better than partial correla-
tion, and show the superior precision of combinedFC in
both types of models. This result shows that partial corre-
lation by itself is not a better strategy than correlation un-
der all possible scenarios and that the behavior of
correlation and partial correlation used separately de-
pends on the particular causal mechanisms governing
the true network. In contrast, combinedFC takes into ac-
count the strengths and limitations of both methods and
achieves a better performance regardless of the underly-
ing causal topography of the network.

The superior precision of combinedFC in these simu-
lations confirms the benefit of adopting a causal perspec-
tive about the data generating system of interest. In
combinedFC, we assume that brain signals come from a
causal system that can be modeled in terms of direct
causal connections between nodes and that those direct
connections give rise to patterns in the shape of con-
founders (A ← C → B), causal chains (A → C → B),
and colliders (A → C ← B), which when incorrectly mod-
eled can give rise to spurious edges. These causal as-
sumptions lead to increased confidence that the
combinedFC inferences are not reflecting indirect con-
nections (because we condition for causal chains using
partial correlation), nor spurious nonexistent edges (be-
cause we condition for confounders using partial correla-
tion and account for conditioning on colliders by doing a
bivariate correlation check).

Critically, because bivariate correlation is by far themost
popular FCmeasure in fMRI research, combinedFC should
be primarily assessed relative to bivariate correlation.
Because the limitations with combinedFC are substantially
fewer than those of bivariate correlation, widespread
adoption of combinedFC would meaningfully benefit
the field of FC research. To illustrate this improvement,
consider the empirical fMRI application presented here.
It is a whole-cortex 360-region problem for which we
are trying to infer a network containing relevant informa-
tion about the strength and directness of its connections.
It is also a densely connected system with a high probabil-
ity for the presence of confounders (e.g., a primary visual
region sending information to various secondary visual re-
gions upward in the visual stream), causal chains (e.g., in-
termediate regions serving as relays in information paths
from primary sensory regions to decision-making centers),
and colliders (e.g., hubs that consolidate information

Figure 6. Positive or negative spurious partial correlations when
conditioning on a collider. The left panel shows a collider causal
structure from regions X1 and X2 to X3 and an associated linear model
with connectivity coefficients w1 and w2 and Gaussian noise terms E.
We simulated data from this linear model for values of w1 and w2 from
−3 to +3 and report in the right panel the resulting spurious partial
correlations of X1 and X2 conditioning on X3 for combinations of values
of w1 (x axis) and w2 ( y axis). When both connectivity coefficients have
positive values, the resulting spurious partial correlation will be
negative (blue region indicated by a yellow square). Negative spurious
partial correlations are also observed if both connectivity coefficients
are negative. In contrast, when the connectivity coefficients have
opposite sign, the resulting spurious partial correlation will be positive
(red regions).
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coming from different sensory regions). The problem
with using bivariate correlation for this problem is that
it is impossible to disambiguate if the inferred edges rep-
resent real direct connections, indirect connections of dif-
ferent degrees, or spurious confounded connections. In
this sense, the only conclusion we can make about an
edge between A and B in a bivariate correlation network
is that time series A and B are associated to a certain de-
gree without knowing anything about the mechanism
producing their association. Even if we threshold a corre-
lation matrix by correlation strength, the remaining edges
cannot be disambiguated: It is possible that, because of
strong connections with the intermediate nodes in a
chain (or with the common cause), an indirect connec-
tion (or spurious edge) results in a very strong correlation
coefficient that survives the threshold. Because of the in-
herent causal ambiguities of bivariate correlation, we can
only conclude that the nodes interact (directly or indirectly)
and/or are similarly influenced by common nodes (Reid
et al., 2019).

Without causal assumptions it is not possible to over-
come the ambiguities of bivariate correlation and its lim-
itations as an informative FC method. In contrast,
combinedFC uses two simple causal assumptions. The
first is that by conditioning on the proper nodes we
can disambiguate between direct, indirect, and spurious
connections. Properly, by using full partial correlation as
a first step we attempt to (1) condition on intermediate
nodes from causal chains to avoid edges that represent
indirect connections and (2) condition on confounders
to avoid edges that represent spurious connections.
The second causal assumption is that conditioning on a
collider will associate two nodes that were previously in-
dependent. This assumption suggests the rule that, if we
found a partial correlation between two nodes but no ev-
idence of bivariate correlation—where no conditioning is
made—we will be in the presence of a spurious associa-
tion and the corresponding edge should be deleted.
These causal assumptions are what provide relevant in-
formation about strength and directness of associations,
allowing the interpretation of edges in an inferred con-
nectivity matrix as direct connections between nodes,
thus making combinedFC a method more appropriate
than bivariate correlation for the goals of FC research
(Reid et al., 2019).

In the Results section, we illustrated an empirical appli-
cation of combinedFC to resting-state fMRI, in which par-
ticipants do not perform any task (besides keeping still in
the scanner). For experimenter-controlled task para-
digms, Cole et al. (2019) showed in simulations and em-
pirical data that FC estimates will be biased when
confounding task-evoked activations are not properly
fitted and removed. Furthermore, this task confounding
effect can bemuchmore problematic with fMRI because of
features of hemodynamic response functions. Following
the results from Cole et al. (2019), we recommend first
using finite impulse response regression to fit and remove

mean task-evoked activations in fMRI data and then apply
combinedFC to estimate task-related FC.
CombinedFC can be described as a method that builds

an initial connectivity network by computing the condi-
tional associations between each pair of nodes given
the rest, to avoid spurious edges from confounders and
causal chains, and then removes spurious edges arising
from conditioning on colliders if the corresponding
nodes are not unconditionally associated. This general
description implies that we can use different methods
to compute associations and conditional associations, de-
pending on the properties of the data or other theoreti-
cal and computational considerations. The benefits of
combinedFC depend on its causal assumptions and not
on any particular implementation. So, as with correlation
and partial correlation, combinedFC should be a better
approach than any of the chosen statistical association
(e.g., mutual information) and conditional association
(e.g., conditional mutual information) methods used
alone.
As mentioned in the Results section, multiple and sim-

ple regression are straightforward alternatives to partial
correlation and correlation to implement combinedFC.
The βj coefficients of a multiple regression are a measure
of the conditional associations between a node and each
of its individual j regressors controlling for the rest. A
multiple regression coefficient βj = 0 will indicate that
the node and its regressor j are conditionally indepen-
dent given the rest of the nodes (assuming linear rela-
tionships). Conversely, βj ≠ 0 will indicate a conditional
association. This property of multiple regression makes it
a valid alternative to partial correlation in combinedFC. In
the same way, the simple regression coefficient is a mea-
sure of unconditional association and thus an alternative
to bivariate correlation for the combinedFC collider
check. Multiple regression has been successfully used
to build resting-state connectivity models from which
predictions about task activations are made (Ito et al.,
2017; Cole et al., 2016), and thus it is expected that using
combinedFC to remove spurious connections from these
models will allow even better predictions—or at least
predictions that are more causally accurate.
The general description of combinedFC does not

make any assumption about the distribution of the data,
temporal properties, or linear relationship between the
nodes. This suggests the adaptability of the strategy to
different data assumptions. Next, we present some future
research scenarios and how combinedFC can be adapted
to them.
To get reliable estimates, partial correlation requires

more datapoints than nodes. The simulations and empir-
ical data presented here satisfy this requirement. For
problems where the number of nodes is considerably
larger to the number of datapoints, also known as high-
dimensional problems, it is necessary to apply specially
tailored methods to assess conditional associations
(Bühlmann & Van De Geer, 2011); otherwise, the variance
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of the estimators increases to infinity, making them unus-
able (James, Witten, Hastie, & Tibshirani, 2013). This is a
common situation with fMRI, for instance, because of the
typically larger number of voxels relative to datapoints.
Two of the most popular high-dimensional methods to

recover networks are forms of regression regularization
such as lasso (Tibshirani, 1996) and ridge regression
(Hoerl & Kennard, 1970), which compute regressions
with an extra regularization parameter that shrinks coef-
ficients to zero or close to zero. Other high-dimensional
alternatives are methods that estimate a regularized in-
verse covariance matrix from which partial correlation co-
efficients can be derived. Glasso (Friedman, Hastie, &
Tibshirani, 2008) is possibly the most popular of these
methods. Hinne, Janssen, Heskes, and van Gerven
(2015) introduce a Bayesian solution using priors, and
BigQuic (Hsieh, Sustik, Dhillon, Ravikumar, & Poldrack,
2013) is a recent algorithm that can scale up to a million
variables and has been applied to a whole-cortex voxel level
problem. One more alternative for high-dimensional
problems is to use dimension reduction methods
(James et al., 2013) such as principal component regres-
sion (Hotelling, 1957; Kendall, 1957), in which principal
component analysis is used to obtain a low-dimensional
set of components, which are then used as regressors in
a multiple linear regression. In high-dimensional prob-
lems, the combinedFC strategy of computing conditional
associations followed by simple associations is still valid,
but it has to be implemented with regularization
methods. For example, the first step can be computed
with glasso to determine pairs of nodes that are condition-
ally associated, and the second step can be computed
with bivariate correlation or simple regression to detect
possible spurious edges from conditioning on a collider.
We include a glasso implementation for combinedFC in
the accompanying toolbox.
The simulations used here assume nodes interact in a

linear fashion, such as X = bY + E, where b is the asso-
ciation coefficient. Bivariate correlation and partial corre-
lation reliability is guaranteed for linear problems, but if
the assumption of linearity is not valid, for example, X =
bY2 + E, it will be necessary to adopt nonlinear associa-
tion and conditional association methods. Importantly,
the logic behind combinedFC is valid (in principle) for
nonlinear interactions, such that measures of association
other than bivariate and partial correlations could be
used. The conditional mutual information and mutual in-
formation test from Cover and Thomas (2012); the
kernel-based conditional independence test from
Zhang, Peters, Janzing, and Schölkopf (2011); and the
scalable conditional independence test from Ramsey
(2014) are alternatives to implement combinedFC in
the presence of nonlinear interactions.
Bivariate correlation and partial correlation, as used

here, do not exploit temporal lag properties of brain sig-
nals. We could do this, for example, by considering a dy-
namic linear model Xt = WXt-k + Et, where the variables

are time indexed, there is a temporal lag k ≥ 1, and the W
matrix encodes the temporal interactions between the
variables. To make inferences about the temporal associ-
ations and conditional associations between nodes when
taking temporal lags into consideration, we require
methods that include assumptions about the dynamics
governing the causal mechanisms. The challenge of
combinedFC in the temporal domain is then to properly
model the temporal dynamics of common causes, causal
chains, and colliders. Popular approaches model the con-
nectivity mechanisms as structural vector autoregressive
processes and try to learn a dynamic network using tem-
poral conditional association facts (Malinsky & Spirtes,
2018; Runge, 2018; Moneta, Chlaß, Entner, & Hoyer,
2011). Alternative methods to recover dynamical net-
works using different causal assumptions also have
shown good results under certain conditions, and some
of them have been applied to neural data (Runge et al.,
2019; Weichwald, Grosse-Wentrup, & Gretton, 2016;
Gates & Molenaar, 2012); a strategy that also combines
bivariate and partial temporal associations to improve
causal inferences is described in Stramaglia, Cortes, and
Marinazzo (2014).

The problems described above show the flexibility of
combinedFC to different data scenarios. This flexibility
derives from the fact that the benefits of combinedFC
are based on its causal assumptions and not on the par-
ticular statistical association methods used to implement
it. Nevertheless, there are limitations of combinedFC that
arise from the presence of particular causal patterns in
the true networks.

The main limitation of combinedFC is that it is not
guaranteed to avoid all possible spurious edges from con-
founders and colliders. Consider a model where A and B
are not directly connected but have a common cause A
← C → B, together with a common effect A → D ← B. In
the first step of combinedFC, the conditional association
of A and B conditioning on C and D will be nonzero be-
cause we conditioned on the collider D, but in the sec-
ond step, the unconditional association of A and B will
also be nonzero because of the presence of the con-
founder C. In this model, combinedFC will always infer
a spurious edge between A and B. Notice that bivariate
correlation and partial correlation used alonewill also infer
such spurious edge. This kind of causal pattern requires a
different strategy, such as choosing conditioning sets of
different sizes in an iterative way to remove spurious edges
from an initially fully connected model. The Peter Clark
(PC) algorithm—one of the conditional independence
strategies for making causal inferences (Spirtes & Zhang,
2016; Mumford & Ramsey, 2014)—and its modifications
pioneered this strategy to recover an undirected network
from which logical inferences about the orientation of the
edges are then made (Colombo & Maathuis, 2014; Spirtes
et al., 2000). Another strategy is to use, if available, theory-
based expert knowledge to define appropriate condition-
ing sets as subsets of the available variables or, in a more
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data-driven way, define conditioning sets by selecting the
variables more statistically associated with the pair of var-
iables for which the conditional independence is being
evaluated. The effectiveness of this strategy has been ex-
plored in Marinazzo, Pellicoro, and Stramaglia (2012) and
Stramaglia et al. (2014). We recommend the PC algorithm
and related approaches when it is important to avoid
such cases. Notably, PC and related approaches are more
complex than combinedFC, such that combinedFC might
be generally preferred because of the ability for re-
searchers to more easily understand how it works.

Cyclic interactions are other causal patterns that pose
challenges to the combinedFC strategy. Assume a model
where two nodes A and B are not directly connected but
each one has a feedback cyclic interaction with C, such as
A ⇆ C ⇆ B. Here, the node C acts both as a confounder
and as a collider. In data sampled from this network, the
conditional association of A and B controlling for C will
infer a spurious edge because of conditioning on the col-
lider C, and the unconditional association will also infer a
spurious edge because of the confounder C. CombinedFC
will incorrectly infer a spurious edge between A and B in
this cyclic network. Likewise, bivariate correlation and
partial correlation used alone will produce a spurious
edge in this case. Making causal inferences in cyclic sce-
narios is an active area of research, and network learning
algorithms are available for particular assumptions of
domain, linearity, distribution, and temporal properties
of the data (Runge, 2018; Sanchez-Romero et al., 2018).

There are connectivity patterns for which combinedFC
will correctly infer the presence of an edge between two
nodes but will incorrectly estimate the strength of the di-
rect association. Consider three nodes A, B, and C, for
which combinedFC first inferred a nonzero partial corre-
lation between nodes A and B controlling for C and then
inferred a nonzero correlation between nodes A and B.
According to the combinedFC rules, these two results im-
ply that A and B are directly connected with a strength
equal to the partial correlation coefficient rAB|C. The
problem is that these results are underdetermined and
can be produced by three different causal structures: If
the true structure is A → B with a confounder A ← C
→ B, then the strength of the direct association between
A and B will be correctly captured by the partial correla-
tion coefficient between A and B controlling for C, rAB|C;
the same happens in the case of a chain A → C → B.
However, if the true structure is A → B with a collider
A → C ← B, then the strength of the direct association
between A and B will not be correctly captured by the
partial correlation coefficient but by the bivariate correla-
tion coefficient between A and B, rAB. In a problem like
this, combinedFC will correctly infer the presence of an
edge between A and B but will not be able to disambig-
uate the correct strength of their direct association. The
ambiguity of the association strength can be resolved
if information about the orientation of the edges is ob-
tained via expert knowledge or causal learning methods

(Sanchez-Romero et al., 2018; Mumford & Ramsey,
2014). For example, if the learned model from the data
is A → B and A ← C → B, then a regression of node B
on its two direct causes A and C will give a correct esti-
mate of the direct association strength between B and
A. As another example, if the inferred model is A → B
and A → C ← B, then the regression of B onto its only
direct cause A will give a correct estimate of the direct as-
sociation between B and A.
Finally, as with any statistical method that tries to re-

cover a connectivity network from conditional associa-
tions, the results of combinedFC are dependent on the
variable set considered. This implies that if we remove
or include new variables in the data set, inferences about
the presence or absence of previously inferred edges
may change. For example, a previously inferred edge be-
tween brain regions A and B may be removed when we
add—and condition on—a new region C that is a real
confounder. In the opposite case, an edge between A
and B will be inferred if we do not include the real con-
founder C in the variable set. Given this dependency,
connectivity results should be reported and interpreted
relative to the variables considered. Inferring causal con-
nectivity networks in the presence of unmeasured con-
founders, also known in the literature as latent
confounders, is an ongoing research problem for which
sophisticated methods have shown ways to model the
presence of unmeasured confounders under strict as-
sumptions, for example, the fast causal inference algo-
rithm and its variants (Malinsky & Spirtes, 2018;
Colombo et al., 2011; Spirtes et al., 1995) and algorithms
based on independent component analysis (Sanchez-
Romero et al., 2018; Hoyer et al., 2006).
We have demonstrated that, despite these limitations,

combinedFC is substantially more accurate than either bi-
variate correlation or partial correlation alone. We there-
fore recommend use of combinedFC in place of bivariate
correlation or partial correlation in ongoing FC research.
Notably, some other current methods might be just as
valid (or even more so), but the complexity of those
methods is problematic because researchers should not
apply methods they do not understand well. It will there-
fore be critical for future research to develop causally valid
methods that are easily comprehensible to researchers, in
addition to providing clear explanations (especially re-
garding assumptions of methods) that aid in valid use of
such methods by researchers.
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