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SUMMARY

Many functional network properties of the human
brain have been identified during rest and task
states, yet it remains unclear how the two relate.
We identified a whole-brain network architecture
present across dozens of task states that was highly
similar to the resting-state network architecture. The
most frequent functional connectivity strengths
across tasks closely matched the strengths
observed at rest, suggesting this is an ‘‘intrinsic,’’
standard architecture of functional brain organiza-
tion. Furthermore, a set of small but consistent
changes common across tasks suggests the exis-
tence of a task-general network architecture distin-
guishing task states from rest. These results indicate
the brain’s functional network architecture during
task performance is shaped primarily by an intrinsic
network architecture that is also present during
rest, and secondarily by evoked task-general and
task-specific network changes. This establishes
a strong relationship between resting-state func-
tional connectivity and task-evoked functional con-
nectivity—areas of neuroscientific inquiry typically
considered separately.

INTRODUCTION

Recent advances in human neuroimaging have led to numerous

studies characterizing interregional temporal relationships dur-

ing task and resting states (Fox and Greicius, 2010; Friston,

2011). Initial functional connectivity (FC) studies focused on FC

during task states (Friston, 1994), yet FC during the resting state

has come to dominate the field (Biswal et al., 2010). There are

many reasons for this shift in focus, although perhaps the most

influential is the notion that resting-state FC may characterize

an ‘‘intrinsic’’ functional network architecture that is present

across many (or all) brain states (Fox and Raichle, 2007; Vincent

et al., 2007), much like structural connectivity. If true, this would

greatly simplify the study of functional brain organization—from

needing to consider a virtually infinite variety of task states to
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considering a state space strongly constrained by a single

(or few) network architecture(s). Thus, determining the universal-

ity of the resting-state network architecture is an important step

toward understanding the brain’s functional organization.

Most comparisons between task and rest FC have observed

high correspondence (Fair et al., 2007; Fox et al., 2007; Greicius

et al., 2003), but these comparisons have been limited to small

sets of task states and connections. More recent comparisons

between task and rest FC have emphasized differences in FC

patterns, also during a small number of task states (Buckner

et al., 2013; Hermundstad et al., 2013; Mennes et al., 2013).

Thus, some studies advocate a more universal architecture,

while others advocate differential task and resting architectures.

We sought to test for universality of the resting-state network

architecture in a more comprehensive manner by using large-

scale graphs built from FC among hundreds of brain regions en-

compassing everymajor brain system (Power et al., 2011) across

dozens of task states (Barch et al., 2013; Cole et al., 2010) and

rest. We hypothesized that resting-state FC would reveal an

intrinsic network architecture that would also be present across

a wide variety of task states. We also hypothesized that some

task-evoked FC changes from this intrinsic architecture would

be evident (‘‘evoked’’ network architectures) but that these

evoked changes would tend to be small and be restricted to a

relatively small number of connections for any given task. This

would suggest that the intrinsic network architecture represents

a standard state of brain organization that is modified as neces-

sary to implement task demands. Generally, this would help

bridge resting-state FC and task FC findings in the literature,

facilitating a more comprehensive account of human brain

organization.

RESULTS

Detecting the Human Brain’s Intrinsic and Evoked
Network Architectures
It may be that evoked FC changes occur in the presence of an

intrinsic functional network architecture that extends across

many or all brain states (e.g., rest and tasks). To address this

question, we used fMRI to measure temporal relationships be-

tween hundreds of brain regions across dozens of task states

and rest in single subjects. Two data sets were used. The first

data set involved the permuted rule operations cognitive para-

digm (Cole et al., 2010) that contained 12 rules that were
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Figure 1. Testing Multiple Tasks per Subject

(A) The first fMRI data set involved 64 distinct tasks, composed of unique combinations of task rules (Cole et al., 2010). Each subject (n = 15) performed all 64

tasks.

(B) The second data set involved seven tasks chosen to elicit the involvement of all major cognitive domains and brain systems (Barch et al., 2013). Each subject

(n = 118) performed all seven tasks.
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permuted into 64 distinct task states in short task blocks (Fig-

ure 1A). Tasks were defined as distinct cognitive processes,

such that the same stimuli could be presented across each of

the 64 tasks, but distinct cognitive processes would be neces-

sary to respond correctly to each one. Importantly, this paradigm

isolated cognitive task set differences by minimizing perceptual

changes across tasks (e.g., changes in visual field, sensory

modality). To extend and test the robustness of findings from

the 64-task data set, we also conducted analyses with a Human

Connectome Project data set (118 subjects) that included rest

and a set of seven tasks (Figure 1B) (Barch et al., 2013). The

seven tasks were highly distinct from one another, although

they also differed in basic perceptual aspects (e.g., changes in

visual field, sensory modality), which could be a larger driver of

FC differences than cognitive task set differences. FC was esti-

mated as temporal correlations (Zalesky et al., 2012) among a set

of 264 putative functional regions throughout the brain (defined

independently to reduce potential statistical biases) (Power

et al., 2011). These correlations were estimated for task FC after

regressing out (across-trial mean) task-evoked activations and

removing the short rest periods between task blocks from

each region’s time series.

In addition to testing for the existence of an intrinsic network

architecture—an architecture common across rest and multiple

task states—we sought to identify interregional connections

unique to each task state, together comprising a set of evoked

network architectures. To estimate both intrinsic and evoked

architectures simultaneously, we used a tool (multislice commu-

nity detection) developed to extract clusters and cluster changes

in multinetwork systems (Mucha et al., 2010) and recently

applied to neuroimaging data sets (Bassett et al., 2011) (Fig-
ure 2A). Unlike other clustering algorithms, this algorithm

enabled us to identify network communities (putative functional

modules) in brain networks both within and across task states.

Using this approach, we identified network communities elicited

differentially across tasks (using a low intertask coupling para-

meter), and we also identified consensus communities present

across tasks (using a high intertask coupling parameter). The

assignment of brain regions to communities is referred to as a

‘‘partition.’’ The coupling parameter determines the extent to

which identified partitions are constrained by multiple task

states. We were most interested in low coupling parameters, in

which all task states are considered separately, and also espe-

cially interested in high coupling parameters (identified by the

production of a partition stable across additional increases in

the coupling parameter), in which all task states are considered

together. To examine the relationship between these community

partitions and a previously defined resting-state FC community

partition (Power et al., 2011) (Figure 2B), we calculated the parti-

tion similarity using the Z score of the Rand coefficient (Traud

et al., 2011).

We hypothesized that there would be significant differences

among the task partitions at low coupling parameters but that

they would converge on a consensus partition similar to the

resting-state FC community partition at high coupling parame-

ters. Note that the multislice community detection approach

forces a single consensus partition at high coupling parameters,

but this approach does not require that the consensus partition

look like any other particular partition (e.g., a resting-state FC

partition). Furthermore, this approach does not require that par-

titions differentiate from any particular other partition at low

coupling parameters.
Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc. 239
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Figure 2. Multislice Community Detection Reveals a Network Architecture across Tasks Similar to an Independently Identified Resting-State

Network Architecture

(A) Multislice community detection identifies clusters of highly connected nodes, either separately (low coupling parameter) or jointly (high coupling parameter)

across multiple states. Adapted from Mucha et al. (2010).

(B) The community partition identified by Power et al. (2011) using independent resting-state data, color coded by community assignment.

(C) Similarity of each task partition to the resting state partition reported in Power et al. (2011). When the coupling parameter is low, changes in community

structure across tasks are readily apparent, indicating evoked FC changes. In contrast, as the coupling parameter increases, a consensus partition is identified

that is highly similar to an independently identified resting-state FC partition (Power et al., 2011), suggesting the presence of an intrinsic network architecture

across tasks. Error bars indicate SEs across subjects.

(D) Similar results in the seven-task data set.
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When the coupling parameter was low, allowing greater inde-

pendence of communities across tasks, significant differences

were found in community structure across tasks (Figure 2C).

This was found using an ANOVA on partition similarities with a

coupling parameter of 0 (see Experimental Procedures for de-

tails): F(63,13) = 21, p < 0.00001. This indicates that the brain’s

functional network architecture can differ between task states,

as implied by previous task FC studies (Bassett et al., 2011; Fris-

ton, 2011; Rissman et al., 2004; Cocchi et al., 2013). When

coupling parameters were higher, encouraging the algorithm to

find common structure across tasks, a single architecture

emerged with high similarity to the resting-state network archi-

tecture: Z = 24, p < 0.00001. Similar results were obtained in

the seven-task data set (Figure 2D). Note that across all tasks,

and even with low coupling parameters and thus more variable

partitioning (Figure 2C, left), the similarity of task partitioning to

resting-state partitioning was high (task with lowest similarity:
240 Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc.
Z = 7, p < 0.00001). This indicates that the network architecture

present across many task states is also present during rest,

signifying the general relevance of resting-state FC to task

states.

Intrinsic Network Architecture: Resting-State and
Multitask Similarity
We used the multislice community approach because of its abil-

ity to simultaneously characterize network dynamics in terms of

interstate differentiation (at low coupling parameters) and inter-

state similarity (at high coupling parameters). We next used a

simpler approach to better characterize the intrinsic network

architecture observed at high coupling parameters. This

approach involved building FC matrices of pairwise functional

connections separately for multitask and resting-state FC. We

equated these two forms of FC for comparison by calculating

multitask FC as similarly as possible to how resting-state FC
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Figure 3. Multitask Architecture Is Highly Similar to the Resting-State Architecture, Reflecting the Existence of an Intrinsic Network Orga-

nization

(A) Group-averaged multitask and resting-state functional connectivity matrices, with brain regions ordered according to putative functional systems (coded by

color bands along the matrix edges) previously identified from resting-state data (Power et al., 2011). Strong intramodule FC demonstrates community structure

consistent with functional systems. Multitask FC (left) reflects the central tendency of interregional correlations across tasks, while resting-state FC (right) reflects

interregional correlations in spontaneous activity. The high similarity between these twomatrices (r = 0.90, p < 0.00001) suggests that multitask and resting-state

FC both reflect an intrinsic functional network architecture.

(B) A standard community detection approach (Blondel et al., 2008) was used to partition multitask and resting-state FC into putative functional brain systems.

The partitions were similar to the independently defined resting-state FC partition (Figure 2B): Z = 94 for resting state, Z = 79 for multitask.
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was calculated. Specifically, multitask functional connections

were calculated as correlations across the concatenated time

series of all 64 tasks (excluding rest periods). We thus define

the multitask matrix as the network organization observed

across many task states, estimated from 58 min of task fMRI

per subject (Figure 3A, left). As a comparison, we define a

resting-state matrix using resting-state FC, estimated from

10 min of rest fMRI per subject (Figure 3A, right).

We found that the across-subject mean resting-state FC and

multitask FC matrices were highly similar (r = 0.90, p <

0.00001), supporting the existence of intrinsic FC common

across rest and a variety of task states. This result was replicated
in the seven-task data set (Figure 4): r = 0.90, p < 0.00001. Note

that the seven-task data set estimates were based on 40 min of

task fMRI data and 56 min of rest fMRI data per subject.

Together, these results suggest that a highly similar underlying

network architecture is present across rest and task.

We hypothesized that the equivalence of multitask FC and

resting-state FC was due to resting-state FC reflecting the

most frequent (modal) state of a given connection, suggesting

each FC value has a ‘‘standard’’ value that tends to remain un-

changed across task states and rest. We calculated a multitask

modal FC matrix by calculating the mode across all 64 tasks for

each connection (Figure 5). Consistent with our hypothesis, the
Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc. 241



Figure 4. Multitask Intrinsic FC Is Also Highly Similar to Resting-State FC in the Seven-Task Data Set

The multitask and resting-state FC comparison analysis was repeated with the seven-task data set, with identical conclusions as with the 64-task data set. Note

the high similarity not only between these two matrices, but also their similarity to the matrices from the 64-task data set (Figure 3A).
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multitask modal FC matrix was highly correlated with the multi-

task matrix (64-task data set, r = 0.92; seven-task data set, r =

0.97). We more directly tested this possibility by comparing the

multitask modal FC matrix with the resting-state FC matrix.

Though the correlation was lower than with the original multitask

matrix it was still highly significant (64-task data set: r = 0.83, p <

0.00001; seven-task data set, r = 0.88, p < 0.00001), suggesting

intrinsic FC reflects the most frequent state of a given connec-

tion. Intuitively, this can be visualized as an approximately

Gaussian distribution for each connection across brain states,

with a prominent peak reflecting the modal value and suggesting

a tendency for the connection’s strength to remain stable across

states.

We next sought to better characterize the intrinsic network

architecture by identifying the network communities present in

the resting-state and multitask FC matrices and comparing

these partitions to a previously identified resting-state commu-

nity partition (Figure 2B). A standard algorithm (Blondel et al.,

2008) was used to identify communities—groups of regions

with stronger within-group FC than expected in a nonparametric

null model (see Experimental Procedures for details).

We observed similar network partitions for resting-state FC

and multitask FC (Figure 3B): Z = 128, p < 0.00001. Furthermore,

the resting-state FC (Z = 94, p < 0.00001) and multitask FC (Z =

79, p < 0.00001) partitions were also similar to the partition iden-

tified by Power et al. (2011) using independent resting-state data

and a distinct community detection approach (Figure 2B). Note

that the few observable differences between the partitions in Fig-

ure 3B were not stable (i.e., they shifted depending on the exact

partitioning parameters chosen) and likely reflect noise in the

data given the small number of subjects included in this analysis.

These results support the conclusion that there is an intrinsic FC
242 Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc.
architecture that is present across rest and a variety of tasks and

that this network architecture is largely consistent with known

functional systems such as visual, default, and fronto-parietal

systems.

Intrinsic and Evoked FC: Relative Contributions to Task
Network Configurations
The results thus far suggest the existence of both intrinsic and

evoked network architectures and that the intrinsic network ar-

chitecture reflects a standard value for each functional connec-

tion across task states. This implies that the intrinsic network ar-

chitecture continues to shape the brain’s overall functional

network structure during tasks but that task-specific FC changes

are also present. We next assessed the degree to which intrinsic

FC and evoked FC contribute to each task’s functional network

structure (i.e., each task’s FCmatrix). As before, we primarily uti-

lized FCmatrix comparisons. We illustrate these FC matrix com-

parisons using the seven-task data set (Figure 6), given the better

single-task FC estimates due to substantially larger amount of

data per task (several minutes each) relative to the 64-task

data set (approximately 22 s each). We continue to focus on

the seven-task data set whenever single-task FC estimates are

involved.

We assessed the relative contribution of intrinsic FC and

evoked FC to each task FC matrix by calculating the correlation

between the intrinsic FC matrices and each task individually

(Figure 6 and Figure S1A available online). As before, we

compared whole-brain FC matrices using Pearson correlations,

but we now square the resulting r values to facilitate inferences

regarding percent variance explained. We found that the

resting-state FC matrix was highly correlated with each indi-

vidual task on average (mean squared Pearson correlation



Figure 5. Multitask Modal FC Matrices

Themodal FC values across tasks are visualized for both data sets. This consisted of identifying themost frequently occurring value across all task states for each

functional connection.
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coefficient [r2] = 0.38, t(63) = 153, p < 0.00001), as was the

multitask FC matrix (mean r2 = 0.46, t(63) = 166, p < 0.00001).

Moreover, we observed that the multitask FC matrix accounted

for more of the intertask variance than did the resting-state FC

matrix (Student’s t test on the Pearson correlation coefficients

[r] between the reference matrix and the individual taskmatrices:

t(63) = 55, p < 0.00001). Note that for these comparisons the

multitask FC matrix was estimated from 63 tasks: the to-be-

compared task was removed from the multitask estimates to re-

move circularity. We explore the implications of greater similarity

of individual tasks to multitask than rest FC further below.

We next asked whether similar results could be obtained from

the seven-task data set. Despite large differences between the

data sets, our findings in the 64-task data set were also observed

in the seven-task data set. Specifically, the resting-state FC

matrix was highly correlated with each individual task on average

(mean r2 = 0.70, t(6) = 26, p < 0.00001), as was the multitask FC

matrix (mean r2 = 0.81, t(6) = 17, p < 0.00001). Moreover, we

observed that the multitask FC matrix accounted for more of

the intertask variance than did the resting-state FC matrix

(Student’s t test on the Pearson correlation coefficients between

the reference matrix and the individual task matrices: t(6) = 4, p =

0.006). Note that the differences in effect sizes between the data

sets was due to differences in the amount of data per task (see

Supplemental Experimental Procedures), corroborating our de-

cision to focus primarily on the seven-task data set for analyses

involving individual task FC estimates.

To further confirm the existence of an intrinsic network archi-

tecture across diverse brain states, we used a complementary

data-driven approach: principal component analysis on all seven

of the task FC matrices. We identified a single principal com-

ponent that accounted for approximately 85% of the variance
in intertask network architecture (Figure 7A). Consistent with

our prior analyses, this component looked very similar to the

resting-state FC matrix (r = 0.90) (Figure 7B). Furthermore, the

weighting of every task on this first component was positive,

signifying that the component was present across all tasks.

Finally, we assessed the contribution of resting-state FC to this

component relative to task FC.We performed a second principal

component analysis on eight FC matrices: the seven task FC

matrices and one resting-state FC matrix. We again identified a

component that accounted for approximately 85% of the vari-

ance in interstate network architecture. We controlled for the

amount of data by ensuring that the resting-state FC matrix

was estimated using the same number of time points as one of

the task FC matrices (the ‘‘emotional’’ task). We observed that

the first principal component in this larger decomposition was

most highly weighted to the resting-state FC matrix, with a

weight of 0.42 (next highest, 0.41; average weight of the seven

tasks, 0.34) (Figure 7C). These results complement our prior

analyses by again demonstrating the existence of an intrinsic

functional network architecture across task states and by sug-

gesting that this architecture is similar to all task-specific FC

network architectures as well as the resting-state FC network

architecture.

Task-Evoked Differences from Rest Reveal Task-
General Network Changes
We next used a distinct approach to better determine the

amount of FC modification relative to rest for each of the seven

tasks. Rather than using matrix correlations, we tested each

connection independently using t tests (p < 0.05, false discovery

rate corrected for multiple comparisons). We then calculated the

percentage of connections significantly changed from rest
Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc. 243



Figure 6. Comparison of Intrinsic FC with Individual Task FC

Each of the seven-task data set task FC matrices is visualized along with the multitask and resting-state FC matrices. Note that the Pearson correlation co-

efficients (r) for comparisons with themultitask FCmatrix were based on six tasks: the to-be-compared task was removed from themultitask estimates to remove

circularity. These results illustrate the presence of intrinsic FC (a similar FC pattern across all tasks), along with evoked FC changes across tasks.
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(Figure 8A), indicating that 38.98% of connections were altered

on average (minimum, 33.92%; maximum, 48.37%). This is

consistent with the result obtained using matrix correlations re-

ported above, despite reporting in terms of the number of esti-

mated changes rather than variance explained. Together these

results suggest most functional connections are not changed

significantly from the resting-state network architecture during

a given task state. Further confirming the generally small amount

of change from rest, the average absolute value FC change from
244 Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc.
rest across all tasks and connections was 0.04 (0.07 among

significantly changed connections).

We next explored the properties of the relatively few (but likely

functionally important) task-evoked FC changes from rest. We

began by plotting each functional connection’s change from

rest versus its connection strength at rest (Figure 8B). A negative

relationship was apparent, indicating that connections with

higher resting-state FC tend to decrease during tasks, while

connections with lower resting-state FC tend to increase during
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(C) Another principal component analysis addition-

ally included the resting-state FC matrix (for a total

of eight FC matrices). The first principal component
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heavily on the resting-state FC matrix, suggesting

this component is most related to the network

architecture at rest (although it was also related to

all individual task FC architectures).
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tasks. This was the case for all seven tasks (r values of �0.24,

�0.66, �0.48,�0.53,�0.61, �0.38, and�0.58; all p < 0.00001).

We next plotted the significant changes from rest for each

task, separately for increases and decreases (Figure 8C). This

revealed a complex pattern, with many connections being

changed across all or most tasks. Notably, there was a strong

tendency for within-community connections to decrease

(percent of significant within-community FC changes that were

decreases, 79%), while there was a small tendency toward be-

tween-community connections increasing (percent of significant

between-community FC changes that were increases, 51%).

This is consistent with the observed negative correlations be-

tween task-evoked FC changes and resting-state FC, given

that the communities were defined based on strong resting-state

FC. Note that even though strong positive connections tended to

decrease, they almost always stayed strongly positive during

tasks (Figure 6).

We next summarized consistent across-task FC changes from

rest by subtracting the multitask FC matrix by the resting-state

FC matrix (Figure 8D). The similarity between this FC matrix

and consistent FC changes across tasks in Figure 8C suggests

that the above-mentioned results demonstrating greater individ-

ual-task FC similarity to multitask than rest FC (Figures 6 and S1)

was due to consistent task FC changes from rest. We also ran

this analysis with the 64-task data set (Figure 8E), revealing a
Neuron 83, 23
relatively similar result (r = 0.31, p <

0.00001) despite major differences be-

tween data sets. Within-community con-

nections for both the seven-task (mean

within-community change, �0.04) and the

64-task (mean within-community change,

�0.02) tended to decrease for multitask

FC relative to resting-state FC.

DISCUSSION

The present findings reframe resting-

state FC and task FC in terms of intrinsic

versus evoked network architectures.

This framework may facilitate an inte-

grated understanding across the subfields
of neuroscience that currently focus separately on either resting-

state or task FC. For instance, this account suggests functional

brain systems are defined by a stable intrinsic network architec-

ture that is present across rest and tasks (Figures 2 and 3), estab-

lishing an intimate link between resting-state FC and task FC.

The intrinsic structure is dominant: we found that FC strengths

typically stay unchanged from rest once a task begins (Figures

5 and 6) and that resting-state FC accounts for most of the

brain’s functional network architecture during individual tasks

(Figures 7 and S1). This suggests that while statistically signifi-

cant changes in FC occur across tasks (Figures 2 and 8), these

changes are relatively small (although likely important function-

ally) overall. We further found that task-evoked FC changes

from rest are often similar to one another, suggesting the

existence of a task-general network architecture (Figure 8).

Together, these results suggest the functional network architec-

ture present during a given task is shaped primarily by the

intrinsic network architecture and secondarily by a limited set

of task-general and task-specific evoked FC changes.

Intrinsic and Evoked Network Architectures Jointly
Shape Task FC
Previous findings identified similarity between resting-state FC

and task FC for a small number of brain regions and tasks (Biswal

et al., 1995; Fair et al., 2007; Fox et al., 2007; Greicius et al.,
8–251, July 2, 2014 ª2014 Elsevier Inc. 245
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Figure 8. Task-Evoked FC Changes from Rest Reveal a Task-General Dynamic Network Architecture

(A) Each task’s whole-brain FC matrix was compared to the resting-state FC matrix (from Figure 4). The task order is the same as in Figure 1B.

(B) All task FC changes from rest are plotted (across all seven tasks) versus their resting-state FC values. Significant changes from rest are black, while

nonsignificant changes are gray. Most of the connections (61%) were nonsignificant. The correlation between task FC changes and rest FC was negative for all

seven tasks (mean r = �0.49).

(C) The count of how many tasks involved significant changes from rest plotted for each connection. Many connections changed for all seven tasks (11% of

changed connections).

(D) Differences between the multitask FC matrix and resting-state FC matrix (left versus right sides of Figure 4), summarizing general changes from rest that are

common across tasks.

(E) The same analysis for the 64-task data set, on the same scale as (D). The matrices here and in (D) were relatively similar (despite major differences between

data sets) (r = 0.31, p < 0.00001).
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2003). More recently, studies examining many regions have

emphasized differences between resting-state FC and FCduring

a small number of tasks (Buckner et al., 2013; Hasson et al.,

2009; Mennes et al., 2013). This suggested that resting-state

FC may not be informative regarding tasks (Buckner et al.,

2013), yet we identified a whole-brain intrinsic network architec-

ture across a wide variety of tasks and rest, suggesting resting-

state FC is relevant to task states. This is broadly consistent

with previous studies showing correlations between individual

differences in resting-state FC and task performance (Cole

et al., 2011, 2012; Kelly et al., 2008; van den Heuvel et al.,

2009) and with studies that identified correlations between

resting-state FC and task coactivation patterns (based on neuro-

imaging meta-analysis) (Laird et al., 2013; Smith et al., 2009).

Importantly, the present results provide a potential explanation

for these observations: resting-state FC may relate to behavior

and task coactivation patterns because the intrinsic network

architecture shapes FC during both rest and a wide variety of

task states.

This perspective suggests that the intrinsic network architec-

ture influences all brain activity, including task-evoked activation

patterns. The clearest evidence for this comes from the similarity

of task-evoked activation patterns to the intrinsic network archi-

tecture (Laird et al., 2013; Smith et al., 2009; Ritchey et al., 2014),

which suggests a strong association between intrinsic FC and

task activation. Thus, it may be that even if observed FC correla-

tions during tasks are largely driven by spontaneous activity (Fox

et al., 2007), the intrinsic network architecture nonetheless

shapes task-evoked activation patterns. The present results

suggest that both spontaneous activity and evoked activity

may flow through the same functional network architecture,

with relatively minor changes to this architecture across different

contexts. It will be important for future research to make more

direct links between task-evoked activations, behavior, and the

intrinsic functional network architecture in order to better deter-

mine the extent to which the intrinsic architecture shapes both

spontaneous and task-evoked functionality.

One major reason for current interest in resting-state FC is the

possibility that it can be used to identify a universal intrinsic

network architecture present across most or all brain states.

As outlined above, preliminary evidence for such universality

came from studies relating meta-analytic task activation pat-

terns to rest FC (Laird et al., 2013; Smith et al., 2009). We went

beyond these findings to determine that the actual FC architec-

tures during a variety of individual task states (rather than covari-

ance of activation patterns across tasks/studies) are highly

similar to the resting-state FC architecture. We found that this

intrinsic network architecture was not fixed, however. Instead,

the intrinsic network architecture appeared to be a ‘‘standard’’

state of the human brain’s functional network, with task de-

mands having a moderate effect on this state when considered

in terms of overall brain organization (Figures 7 and 8A). These

results suggest that investigating resting-state FC is an efficient

means for understanding the human brain’s functional organiza-

tion across a wide variety of brain states but that full understand-

ing will require the characterization of individual brain states.

Indeed, despite their moderate effect on overall brain organi-

zation, evoked FC changes are likely of primary importance for
a variety of functional questions. For instance, the contribution

of network organization to adaptive cognition likely relies on

task-specific updates. This is consistent with recent findings

indicating that a fronto-parietal system’s FC updates are

strongly related to current task demands (Cole et al., 2013).

Importantly, such findings are consistent with the present

results, which indicate that a relatively small number of connec-

tions are changed during task performance, since only a small

number of pathways are likely involved in any given task context

(e.g., from a particular representation in visual cortex to a partic-

ular finger representation in motor cortex during a visual-motor

task).

Task-Evoked Changes from Rest Reveal a Task-General
Dynamic Architecture
In addition to a standard network architecture, the brain’s func-

tional network architecture during a given task appears to reflect

(1) task-specific evoked FC and (2) task-general evoked FC. We

identified this task-general network architecture in several ways,

perhaps most straightforwardly as the difference between the

multitask FC matrix and the resting-state FC matrix (Figure 8D).

This revealed a complex set of FC changes, with a prominent

pattern of decreasedwithin-system FCduring task performance.

It will be important for future research to determine what this

pattern means and why it is so consistent across diverse task

states.

One possibility is that this effect is due to some difference in

electrophysiological brain rhythms during resting state relative

to task. For instance, electrophysiological alpha rhythms that

areconsistentlypresent during rest (Buzsáki, 2006)may indirectly

result in increased synchrony in the blood-oxygen-level-depen-

dent signal, such that shifts to other frequencies during task per-

formance decrease fMRI-based FC. Another possibility is that

task performance requires a partial breakdown of network com-

munities (reflected in decreased within-system FC), such that

activity can better flow between systems with diverse functions.

Another notable task-general pattern is the increase between

the visual system and fronto-parietal, default-mode, and sub-

cortical systems. It will be important to determine the sig-

nificance of this pattern. The consistent FC decrease between

fronto-parietal and default-mode systems is also notable, given

evidence that the fronto-parietal system contributes to de-

creases in default-mode activity during a variety of tasks (Anti-

cevic et al., 2012; Raichle, 2010).

More broadly, the observation of a task-general network

architecture suggests that multitask FC might better predict

the functional brain architecture in a wide variety of states than

resting-state FC. Consistent with this conclusion, the multitask

FC architecture was more correlated with most individual task

FC architectures than the resting-state FC architecture, for

both data sets (Figures 6 and S1A). It may be, however, that

the task-general architecture is actually a modification of the

resting-state architecture, which better reflects the ‘‘true’’

intrinsic network architecture given that rest involves especially

low metabolic demand (Raichle et al., 2001). Consistent with

this, we found that rest FC was most related to a network archi-

tecture component common across all tested brain states (Fig-

ure 7). Overall these results suggest that the resting-state
Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc. 247
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network architecture better reflects the intrinsic architecture,

which is consistently modified by the task-general architecture

across a wide variety of tasks.

Limitations
The present work involves several limitations worth noting. First,

while our study investigates an especially large sample of task

states per subject, this sample is nonetheless small relative to

the virtually infinite variety of possible tasks. However, our results

were similar across two data sets with highly distinct sets of

tasks, suggesting these results will generalize to a wide variety

of other tasks as well. Second, we used a limited set of 264

regions of interest to estimate FC throughout the brain (Power

et al., 2011). We used this set of regions because it sampled

from every major brain system, was estimated using indepen-

dent data (reducing potential circularity or biases from overfitting

in our analyses [Kriegeskorte et al., 2009]), and came with an

independently identified node community partition (again, to

reduce potential biases). Third, less data per task was available

relative to many task FC studies, potentially reducing the reli-

ability of our results. We were able to find statistically significant

differences across task functional connections based on inter-

subject variance (Figures 2 and 8), suggesting results were none-

theless fairly reliable across subjects. Furthermore, most results

were similar across the two data sets despite substantial differ-

ences in the amount of data per task.

Future Directions
It will be important for future research to identify the forces that

shape the intrinsic network architecture. One likely possibility

is that structural connectivity shapes spontaneous and evoked

activity flow through brain networks (Adachi et al., 2012; Goñi

et al., 2014), resulting in similar time series correlations across

rest and task states. Importantly, however, structural connectiv-

ity cannot fully account for resting-state FC (Goñi et al., 2014).

This suggests that synaptic efficacy—the tendency for one

neuron to fire in response to another anatomically connected

neuron—also plays a role in shaping the intrinsic network archi-

tecture. Consistent with this possibility, resting-state functional

connections change with task training (Lewis et al., 2009),

suggesting the intrinsic network architecture partially reflects

learning (possibly via synaptic modifications) from previous

task experiences. The present results suggest this learning

may be Hebbian in nature (Hebb, 1949). This is because

resting-state FC looks similar to multitask FC (Figures 2 and 3),

which forms a consensus across a broad sampling of task expe-

riences similar to how Hebbian learning would, given the many

tasks implemented in daily life. It will be important for future

research to more directly investigate the role of Hebbian-like

learning in shaping the intrinsic network architecture, perhaps

using task training in combination with rest, task, and multitask

FC techniques.

It will also be important to identify the exact neuronal

mechanisms by which evoked FC is altered across tasks. For

example, this may occur via short-term plasticity (Yao et al.,

2007; Zucker and Regehr, 2002) or via altered synchrony of

oscillations among neuronal populations (Buzsáki and Draguhn,

2004; Fries, 2005), possibly coordinated by the fronto-parietal
248 Neuron 83, 238–251, July 2, 2014 ª2014 Elsevier Inc.
control system (Cole et al., 2013; Miller and Cohen, 2001; Sakai,

2008). Indeed, recent results suggest the fronto-parietal system

consists of flexible hubs—brain regions with especially high con-

centrations of evoked FC dynamics with a variety of brain sys-

tems (Cole et al., 2013). It will be critical for future research to

further characterize the role of fronto-parietal and related sys-

tems in top-down control of whole-brain network reconfiguration

as well as the role of distributed and self-organizing processes

that are independent of these systems.

The characterization of stable and dynamic FC in the present

study also suggests the need to reconcile these findings with

evidence that resting-state FC is not stable over time (Hutchison

et al., 2013). For instance, it will be important to determine

whether the intrinsic network architecture identified here is

also prominent across temporal windows during rest, much

like was observed here across task states. Furthermore, it

will be important to test whether the connections that changed

the most across tasks here are also those that change the

most across temporal windows during rest. Such a finding

would suggest the ‘‘flexibility’’ of a functional connection is a

stable property of that connection and therefore something

that could be used to predict brain dynamics across a variety

of states.

Conclusions
In this report we found that many of the interregion temporal

relationships observed during rest are also present during a

wide variety of tasks. This intrinsic network architecture reflects

the most frequent state of each functional connection across

task states, suggesting it is a standard state of the brain. Further-

more, changes from the intrinsic FC network architecture tend to

be limited, as the intrinsic network architecture accounts for

more than half of the variance in the functional network structure

during any given task. When task-evoked differences are pre-

sent, however, they consist of task-general and task-specific

changes from rest. Together, these results bridge perspectives

emphasizing either intrinsic FC or task-evoked FC, suggesting

task FC is composed primarily of intrinsic FC and secondarily

of task-evoked FC. Thus, this work provides a framework for

future studies to characterize FC during tasks in terms of both

intrinsic FC identified using resting states and evoked FC identi-

fied across tasks and in particular task contexts.

EXPERIMENTAL PROCEDURES

Data Collection

Two fMRI data sets were collected. We collected the first data set on a 3T

Siemens Tim TRIO, with 15 right-handed participants (eight male, seven

female), aged 19–29 years (mean age, 22 years). Participants were recruited

from the University of Pittsburgh (Pittsburgh, PA) and surrounding area. All par-

ticipants gave informed consent. Further details regarding participant selec-

tion for this data set can be found elsewhere (Cole et al., 2010). Thirty-eight

transaxial slices were acquired every 2000 ms (field of view, 210 mm; echo

time, 30 ms; flip angle, 90�; voxel dimensions, 3.2 mm3), with a total of 300

echo-planar imaging volumes collected for the rest run and 216 volumes per

task run. Siemens’ implementation of generalized autocalibrating partially par-

allel acquisition was used to double the image acquisition speed (Griswold

et al., 2002). Ten minutes of rest (eyes open with fixation) fMRI data were

collected, followed by ten task fMRI runs involving 64 tasks (four previously

practiced, 60 novel) (Cole et al., 2010). The tasks were presented in short
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blocks (average duration, 22 s) consisting of task instructions (4 s) followed by

three trials (2 s each). Each trial event was followed by a variable 2–6 s delay,

while each task block was followed by a variable 12–16 s delay.

The second data set was collected as part of the Washington University-

Minnesota Consortium Human Connectome Project (Van Essen et al.,

2013). Participants were recruited from Washington University (St. Louis,

MO) and the surrounding area. All participants gave informed consent. The

data used were from the first and second quarter releases, consisting of

data from 139 participants. Data from 21 subjects were not used because

one or more of the data runs were not collected for these subjects, such

that data from 118 subjects were included in the analyses. Whole-brain

echo-planar imaging acquisitions were acquired with a 32 channel head coil

on a modified 3T Siemens Skyra with time to repetition (TR) = 720 ms, time

to echo = 33.1 ms, flip angle = 52�, bandwidth = 2,290 Hz/pixel, in-plane field

of view = 208 3 180 mm, 72 slices, and 2.0 mm isotropic voxels, with a multi-

band acceleration factor of 8 (U�gurbil et al., 2013). Data were collected over

2 days. On each day 28 min of rest (eyes open with fixation) fMRI data across

two runs were collected (56 min total), followed by 30 min of task fMRI data

collection (60 min total). Each of the seven tasks was completed over two

consecutive fMRI runs. Resting-state data collection details for this data set

can be found elsewhere (Smith et al., 2013), as can task data details (Barch

et al., 2013).

Data Preprocessing

In brief, the 64-task data set preprocessing consisted of standard functional

connectivity preprocessing (typically performed with resting-state data), with

several modifications given that analyses were also performed on task-state

data. Resting-state and task-state data were preprocessed identically in order

to facilitate comparisons between them.We performed slice timing correction,

motion correction, removal of the first five volumes of each run, normalization

to a Talairach template, within-run intensity normalization to a whole-brain

mode value of 1,000, linear trend removal for each run, regression of nuisance

variables (24 motion parameters, ventricle, whole-brain, and white matter

signals, along with signal derivatives) using linear regression, and spatial

smoothing (6 mm full width at half maximum). Note that the main results

were broadly similar with and without whole-brain (global) signal regression.

Unlike with standard resting-state functional connectivity preprocessing, a

lowpass temporal filter was not applied, given the possible presence of task

signals at higher frequencies than the relatively slow resting-state fluctuations.

Data volumes with high motion were censored to reduce potential motion

artifacts (Power et al., 2014). We used a frame-wise displacement threshold

of 0.5, above which a given volume would be removed. This threshold was

chosen to be similar to previously chosen thresholds, while also allowing at

least five volumes per subject for most tasks. Note that most tasks included

well above this number of volumes, and only one task (for one subject) was

removed from further analysis because the number of remaining volumes fell

below five.

We sought to preprocess the seven-task data set in a similar manner as the

64-task data set, although some differences were necessary due to differ-

ences in data collection methods. For instance, nonlinear warping was

required to correct spatial distortions in this data set. This and related correc-

tions (spatial normalization to a template, motion correction, intensity normal-

ization) were already implemented in a minimally processed version of the

seven-task data set described elsewhere (Glasser et al., 2013). With the vol-

ume (rather than the surface) version of the minimally preprocessed data,

we used AFNI (Cox, 1996) to additionally remove nuisance time series (motion,

ventricle, whole-brain, and white matter signals, along with their derivatives)

using linear regression, remove the linear trend for each run, and spatially

smooth the data (4 mm full width at half maximum). Unlike the 64-task data

set, motion censoring was not applied given relatively minimal movement by

participants and a desire to see whether replication of results would be

possible without motion censoring. In order to make this data set comparable

to the 64-task data set, the data were temporally downsampled (as the last

step of preprocessing) by averaging data from every three consecutive vol-

umes (making a 2,160 ms TR, close to the 2,000 ms TR in the 64-task data

set). This had an effect similar to a mild low-pass temporal filter on the data

(removing frequencies above 0.46 Hz).
Note that we performed the main multitask FC to rest FC comparison

(Figure 4) without downsampling the seven-task data set as described above,

indicating that the downsampling preprocessing step had only minimal effect

on the results. Specifically, the resting-state FC matrix comparison to the

multitask FC matrix involved almost identical results with (r = 0.89899) and

without (r = 0.89872) downsampling. Further confirming this conclusion, the

resting-state FC matrix was highly similar with and without downsampling

(r = 0.995). This was also true for the multitask FC matrix (r = 0.991).

Data were sampled from a set of 264 brain regions (rather than individual

voxels) in order to make inferences at the region and systems level. This parti-

cular set of regions was used rather than anatomically defined sets of regions

in order to reduce the chance of combining signal from multiple functional

regions (Wig et al., 2011). These brain regions were identified using a combi-

nation of resting-state functional connectivity parcellation (Cohen et al.,

2008) and task neuroimaging meta-analysis (Power et al., 2011). A consensus

partition across the originally reported threshold-specific partitions was used

(Cole et al., 2013). Data were summarized for each region by averaging signal

in all voxels falling inside each region.

Preprocessing was carried out using FreeSurfer (Fischl, 2012) and custom

code in MATLAB 2012b (MathWorks) for the 64-task data set and AFNI

(Cox, 1996) for the seven-task data set (using the minimally preprocessed

version of the data [Glasser et al., 2013]). Further analysis was carried out

with MATLAB 2012b and R 2.15.1 (The R Foundation for Statistical

Computing).

FC Estimation

We estimated FC using Pearson correlations between time series from all pairs

of brain regions (all computations used Fisher’s Z-transformed values, which

were reconverted to r values for reporting purposes). This was straightforward

for resting-state data, as there were no additional steps after preprocessing

prior to calculating these correlations. For task data, we sought to suppress

or remove influences of (across-trial mean) task-related activations on task-

related changes in functional connectivity. This involved standard general

linear model regression of task events, followed by use of the residuals from

these regression models for estimating task FC, as done previously (Cole

et al., 2013; Fair et al., 2007). Note, however, that we found this task regression

step had only minimal effects on the results. See the Supplemental Experi-

mental Procedures for details.

Multislice Community Detection

The categorical version of a multislice community detection algorithm (Jutla

et al., 2011; Mucha et al., 2010) was applied to each subject’s set of task FC

matrices. This version of the algorithm considers each state of the modeled

graph categorically (each network is an independent sample) rather than in a

sequential order (wherein each network is related to the other networks by

an ordinal variable like time). The algorithm was applied with a default struc-

tural resolution parameter of 1, and the intertask coupling parameter was var-

ied from 0 to 2 in 0.2 increments (for methodological and algorithmic details,

see Bassett et al., 2013a). Similar to previous applications to neuroimaging

data sets, the algorithm was run with 100 random optimizations each time

(Bassett et al., 2011, 2013a, 2013b; Doron et al., 2012). To identify a represen-

tative partition, several consensus algorithms exist (Bassett et al., 2013a;

Doron et al., 2012; Lancichinetti and Fortunato, 2012). Similar to Doron et al.

(2012), we identified the optimization most similar (as defined by the maximum

pairwise Z score of the Rand coefficient [Traud et al., 2011]) on average to the

other 99 optimizations used for subsequent analysis. We then plotted the sim-

ilarity (Traud et al., 2011) of each community partition to a previously defined

resting-state FC community partition (Cole et al., 2013; Power et al., 2011)

for each intertask coupling parameter (Figure 2B).

Partition Similarity ANOVA

An ANOVA was run on the partition similarities estimated when the coupling

parameter was 0. The dependent variable was partition similarity (i.e., the parti-

tion similarity Z scores [Traud et al., 2011]), while the categorical variables were

task number (n = 64) and subject number (n = 15). Task number was a fixed

effect, while subject number was a random effect. We reported the main effect

of task number.
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Multitask FC Estimation

This analysis involved removing all interblock rest periods from all regions’ time

series, followed by computing pairwise temporal correlations across all

concatenated task periods. Multitask modal FC estimation involved calcu-

lating FC for each task separately, rounding functional connections to the

nearest 0.01, and then identifying the most frequent FC value across the tasks

for each connection. Modal values that occurred only once across tasks for a

given subject were removed, and any ties (i.e., valueswith the same frequency)

were resolved by taking the median of the tied values. Modal values were then

averaged across subjects for reporting. The modal analysis can be interpreted

as asking, ‘‘If FC values repeated across tasks, did they tend to look like

resting-state FC values’’?

FC Matrix Comparison

We compared FC matrices by taking the upper triangle of each matrix (i.e.,

excluding self-connections and redundant connections), applying a Fisher’s

Z-transform to the FC values, and computing a Pearson correlation on the

resulting vectors of FC values.

Static Community Detection

See Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and one figure and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2014.05.014.
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