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Abstract The human ability to flexibly adapt to novel cir-
cumstances is extraordinary. Perhaps the most illustrative,
yet underappreciated, form of this cognitive flexibility is
rapid instructed task learning (RITL)—the ability to rapidly
reconfigure our minds to perform new tasks from instruc-
tions. This ability is important for everyday life (e.g., learn-
ing to use new technologies) and is used to instruct
participants in nearly every study of human cognition. We
review the development of RITL as a circumscribed domain
of cognitive neuroscience investigation, culminating in re-
cent demonstrations that RITL is implemented via brain
circuits centered on lateral prefrontal cortex. We then build
on this and the recent discovery of compositional represen-
tations within lateral prefrontal cortex to develop an integra-
tive theory of cognitive flexibility and cognitive control that
identifies mechanisms that may enable RITL within the
human brain. The insights gained from this new theoretical
account have important implications for further develop-
ments and applications of RITL research.
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One of the defining characteristics of human-level intelli-
gence is the ability to rapidly restructure one’s behavior into
novel configurations from instruction. This ability is impor-
tant in everyday life. For instance, it is essential for learning
new technologies and new skills at all levels of education.
Furthermore, nearly every experimental psychologist uses
verbal instructions to inform participants how to perform
experimental tasks, yet the mechanisms underlying this
process are largely unknown (Monsell, 1996).

The neural and cognitive processes underlying this ability
are the focus of an emerging area of cognitive neuroscience
research. This new area investigates the neural basis of rapid
instructed task learning (RITL; pronounced “rittle”)—a term
that we propose to describe the ability to rapidly learn task
procedures from instructions. Here we will interpret, distill,
and build a novel theory based on current findings regarding
this key component of human cognition, helping to establish
RITL as a multidisciplinary domain of scientific inquiry,
and thereby help accelerate further research in this area.

We also present RITL as an especially important form of
cognitive flexibility, given the extraordinary speed (one trial)
and adaptability (involving novel mental configurations) that
RITL requires. These attributes make RITL (1)an especially
specific and sensitive methodology for the study of flexible
cognition and (2)an important source of constraints on the kinds
of neural architectures that are capable of implementing flexible
human cognition. We support these conclusions by reviewing
cognitive, computational, and neuroscientific studies of RITL
and postulating a novel neural architecture capable of imple-
menting RITL and other forms of flexible cognitive control.

This article is structured in three main sections, as fol-
lows: First we provide an overview of RITL, including its
definition, along with a review of previous and current
research on the topic. Next, we introduce and discuss our
novel neuroscientific theory of RITL (and of flexible cog-
nition generally). Finally, we take a broad view of RITL
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research, informed by the perspective gained from our new
neuroscientific theory, and look toward future research and
potential applications.

Review of RITL research

Defining RITL

RITL is the process of rapidly (typically, on the first trial)
learning a novel rule or task from instructions. Humans
often use RITL to learn new tasks, such as how to use
new technologies (e.g., a new “smartphone”), how to cook
new recipes (e.g., a new kind of lasagna), or how to play an
unfamiliar game (e.g., the first time that checkers is played).
These tasks can be learned via reinforcement learning
(Sutton & Barto, 1998), yet they are learned much more
efficiently with RITL. Consider, for a moment, how difficult
learning checkers would be without RITL abilities. Instead
of rapidly learning the rules for how each piece moves and
that the goal is to capture all of the opposing player’s pieces,
you would need to randomly select from dozens of possible
actions (e.g., moving your pieces to the other end of the
board or having the goal of moving every piece in se-
quence), until an instructor rewards valid moves and, even-
tually, rewards a win. Reinforcement learning such as this
has been investigated much more extensively than RITL,
despite the clear utility and high frequency of RITL use in
everyday life.

There are two basic forms of reinforcement learning. RITL
is most sharply contrasted with ‘unsupervised’ reinforcement
learning, in which a task is learned on the basis of environ-
mental reinforcement for correct task behavior, rather than
from an instructor. Like problem solving, task learning can
be conceptualized as search through a state space of possible
tasks (see Newell & Simon, 1972). From this perspective, it is
apparent that in many environments, an unsupervised

reinforcement learning approach is equivalent to pseudoran-
dom search, making it highly inefficient (see Fig. 1).

Although reinforcement learning is the primary means of
learning early in life, humans are quickly able to start
receiving instruction from others (i.e., ‘supervised’ learn-
ing). The initial form of supervised learning—termed ‘shap-
ing’—speeds task learning substantially by reinforcing
behaviors as the learner gets closer to the proper task
(Fig. 1A). However, even this efficient form of learning is
still much slower than RITL. Through RITL, learners can
achieve first-trial learning due to the instructor using exam-
ples and/or language to directly specify the correct task in
the state space of possible tasks (Fig. 1B) (Cole, 2009).
Although some tasks are so complex or nuanced that direct-
ly specifying the exact task state is difficult or impossible
(e.g., performing a professional-level tennis backhand),
many tasks in everyday life can be immediately performed
on the first try via RITL (Cole, 2009). RITL research inves-
tigates how the brain is able to rapidly convert the water of
instructions into the wine of novel-task performance.

Defining RITL more precisely: The role of first-trial RITL
and neuroscience

The distinction between RITL and reinforcement learning is
typically clear, but some learning situations involve aspects
of both. For instance, learning can be relatively rapid, yet
accomplished with instructions delivered in the form of
post-trial feedback. Currently, it is uncertain whether such
multitrial feedback-based rapid learning is truly the same as
RITL. Since it is evident that first-trial (i.e., without feed-
back or multitrial integration) performance on a novel task
involves RITL, we suggest that RITL research should focus
primarily on such “first-trial RITL” situations. Supporting
this suggestion, we recently found a sharp shift in behavior
between first and second encounters with novel tasks, even
when other tasks are performed between those encounters

Instructed reinforcement learning (’shaping’) Rapid instructed task learning (RITL)
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Fig. 1 Task learning as search through the space of possible tasks.
Task learning can be conceptualized—in a manner similar to problem
solving (Newell & Simon, 1972)—as search through a state space of
possible tasks. The speed of learning depends on the ability to effi-
ciently traverse this space, and the power of RITL lies in the ability for
the instructor to directly specify the appropriate goal state (or one
nearby) using examples and/or linguistic instruction. (A)Typical stud-
ies of learning in psychology and neuroscience have focused on

unsupervised reinforcement learning, which is akin to trial-and-error
learning with reinforcement at the goal state. In contrast, ‘shaping’ is a
form of supervised reinforcement learning that can speed learning
substantially (though not as much as RITL) by using rewards to coax
the learner closer to the goal. (B)RITL involves directly referring to the
goal state (either verbally or nonverbally), such that the learner can
immediately execute the instructed task
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(Cole & Braver, 2012). Cohen-Kdoshay and Meiran (2009)
also emphasized the importance of focusing on first trials
when investigating the effects of instructions on behavior, in
order to rule out effects of long-term memory traces formed
across multiple trials.

It will also be important, however, for future research to
discover the exact boundaries of what defines RITL. We
suggest that cognitive neuroscience can play a critical role
here. Specifically, we suggest that identifying the neural
mechanisms underlying first-trial RITL will allow for pre-
cise categorization of learning episodes as either involving
or not involving RITL. In other words, we propose that a
learning episode involves RITL insofar as it involves the
neural mechanisms underlying the most theoretically estab-
lished form of RITL: first-trial RITL. It may be that precise
boundaries surround first-trial RITL (e.g., completely dif-
ferent brain processes are activated when feedback is in-
volved), or it may be that the same neural mechanisms are
involved during first-trial RITL and in a variety of similar
learning situations. Adjudicating among these possibilities
will be an important new direction for cognitive neurosci-
ence RITL research.

Previous RITL research: Neuropsychology and the role
of language

The initial studies of RITL—prior to the recent advent of RITL
cognitive neuroscience research—were in the areas of neuro-
psychology and computational modeling. Milner (1964, 1965)
and Luria (1973; Luria, Pribram, & Homskaya, 1964) found
that lesions in the lateral prefrontal cortex (LPFC) led to patients
with normal linguistic abilities who were seemingly able to
understand and remember instructions, yet who had a profound
inability to execute those instructions. These and other instan-
ces of ‘goal neglect’ (Duncan, Burgess, & Emslie, 1995) pro-
vided preliminary evidence that RITL does not simply rely on
language or on remembering instructions during execution.
Instead, these results suggest the existence of processes in
LPFC that convert instructions into task sets that can then be
executed as necessary for accurate task performance.

These studies have indicated that, rather than depending
on linguistic abilities per se, RITL depends on the ability to
rapidly reconfigure task sets. It can be further demonstrated
that in many cases, language is not at all necessary for RITL.
For instance, the instructions for building IKEA furniture
can be learned rapidly, despite the fact that they are con-
veyed in purely iconic diagrams with no language (see
Holmes, 2005, for more examples). Other forms of nonlin-
guistic RITL involve using imitation or context (e.g., using
spatial or temporal proximity to associate an arbitrary stim-
ulus with a response) to rapidly learn new tasks.

Linguistic RITL appears to be the most powerful form,
however. This is due to its ability to directly specify task states

(see Fig. 1B), even when they are abstract. For instance, the
task ‘lift the red items’ is readily specified linguistically, but
may require many trials via the other forms of task learning
(e.g., lifting of a red dotted hat, lifting of a red dotted shirt [‘lift
red dotted clothes?’], lifting of a red striped shoe [‘lift red
clothes?’], lifting of a red striped ball [‘ah, lift the red items’]).
In other words, many more tasks can be specified with lin-
guistic RITL than would be either practical or possible with
other forms of task learning (Cole, 2009).

Previous RITL research: Computational models

The use of punishments and rewards can at best be a
part of the teaching process.. . . It is necessary.. . to
have some other “unemotional” channels of commu-
nication. If these are available it is possible to teach a
machine by punishments and rewards to obey orders
given in some language, e.g., a symbolic language... .
The use of this language will diminish greatly the
number of punishments and rewards required.
—A. Turing, in “Computing Machinery and Intelli-
gence” (1950), in which the Turing test was first
proposed

Computational models have been used to explore the
mechanisms necessary for RITL since long before neuro-
psychological RITL research began. Indeed, Alan Turing
was inspired by the human capacity for RITL—the ability
to convert instructions into novel-task performance—when
he made his field-defining advances in computer science.
For example, his concept of the universal Turing machine
demonstrated a way in which a machine could be rapidly
instructed to perform any computable task (Turing, 1937).
Turing also used the analogy of RITL to propose the use of
high-level programming languages to make instructing a
machine much easier (Turing, 1950; see the quote above).
From this perspective, one of Turing’s legacies is that every
modern computer is, in some sense, a computational model
of the human capacity for RITL.

Programming languages were not intended to model
human RITL per se, however. Therefore, computers did
not yield insight into human RITL until computational
models specifically attempting to model the human
mind were developed. Early on, production models
(consisting entirely of if–then ‘production’ rules) were
built to rapidly learn from instruction (Anderson, 1976;
Kieras & Bovair, 1986). However, these models re-
quired instructions to be represented in the arbitrary
codes used by the models rather than to emerge from
known cognitive or neural mechanisms, reducing the
relevance of these RITL findings to humans.

This limited relationship of computational modeling to
the biological substrates of human learning was overcome,
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in the 1980s, with the widespread introduction of more
biologically plausible ‘connectionist’ models consisting of
networks of neuron-like units. However, in sharp contrast to
RITL, learning in connectionist models was entirely based
on either associative or error-driven algorithms that relied on
trial and error (see Fig. 1A) and typically required thousands
of trials for learning a new task (Rumelhart, McClelland, &
the PDP Research Group, 1986). Importantly, several exam-
ples of ‘structured’ connectionist models (in which some
connections are specified apriori) showed that simulated
networks of neuron-like units could rapidly learn novel
tasks from instructions (Noelle & Cottrell, 1996; Schneider
& Oliver, 1991). These models used specialized units for the
active maintenance of if–then contingencies to allow for
rapid reorganization of the model’s internal state to imple-
ment novel-task parameters. Although these models were
still somewhat slower (dozens of trials) than the first-trial
learning that humans are capable of, these computational
studies demonstrated the utility of if–then rules and of the
active maintenance of information for RITL abilities. More
recently, several theoretical neural architectures have pro-
posed more specific biological substrates for RITL compu-
tations (Doll, Jacobs, Sanfey, & Frank, 2009; Lebiere &
Anderson, 1993; Ramamoorthy & Verguts, 2012; Stocco,
Lebiere, & Anderson, 2010; Zylberberg, Dehaene,
Roelfsema, & Sigman, 2011). Importantly, these proposed
neural substrates converge with the previous neuropsycho-
logical results, since in all of the models the active mainte-
nance of task-relevant representations is thought to occur
within LPFC (Miller & Cohen, 2001).

RITL and human intelligence

One of the most striking distinctions between human and
nonhuman primate intelligence is the tremendous amount of
time that it takes for nonhuman primates to learn tasks. For
instance, it takes several weeks or months for a macaque
monkey to learn a simple delayed match-to-sample task (cf.
Verrico etal., 2011), while a human can learn it immediately
(“press the button when two stimuli in a row match”). This
striking between-species difference illustrates that RITL
may be one of the cognitive skills that have expanded most
rapidly with the evolutionary changes producing Homo
sapiens sapiens, the modern human species.

These considerations suggest that we may learn some-
thing about the evolutionary process underlying RITL abil-
ities by comparing humans to other primate species. First,
however, it would be informative if we could establish the
plausibility of RITL itself as the driving force of evolution-
ary change—as opposed to RITL emerging solely from the
evolution of related cognitive abilities. Importantly, recent
simulation studies have shown that RITL and related forms
of social learning enhance group survival rates (Rendell et

al., 2010; Rendell etal., 2011), providing a plausible selec-
tive pressure behind the evolution of RITL specifically
(though independent selective pressures on related abilities
certainly also played an important role).

Recent evidence has suggested that macaque monkeys
(despite requiring months to learn simple delayed compari-
son tasks) have some limited RITL abilities: They can learn
very simple concrete tasks devoid of interstimulus conflict
with a small amount (about five trials) of practice (Cromer,
Machon, & Miller, 2011) (Fig. 2A & B). Importantly, a
member of a species evolutionarily closer to humans,
Kanzi the bonobo chimpanzee, was able to perform first-
trial RITL (Savage-Rumbaugh etal., 1993). This remarkable
nonhuman primate was able to understand dozens of
English words, such that researchers could verbally instruct
Kanzi to perform arbitrary simple concrete tasks (e.g., “Put
your ball on the pine needles” or “Knife the sweet potatoes”;
Fig. 2C). Kanzi’s RITL ability was not perfect (74% accu-
racy; about the level of a 2½-year-old human), but this
ability is striking enough to suggest that there may be some
common brain difference in bonobos and humans relative to
macaque monkeys that may help to account for enhanced
RITL abilities in these species.

This brain difference may be in anterior LPFC (area 10).
This area has undergone a greater evolutionary expansion in
humans than almost any other brain area (Avants,
Schoenemann, & Gee, 2006). Critically, bonobos have
the largest anterior LPFC of all nonhuman primates
(Semendeferi, Armstrong, Schleicher, Zilles, & Van
Hoesen, 2001). This suggests that anterior LPFC may be
especially important for the computations underlying RITL
abilities. Consistent with this possibility, several RITL stud-
ies have demonstrated the involvement of anterior LPFC
during RITL (see discussion below). It may be that the
selective pressures pushing improvement of RITL abilities
during evolution did so in part by driving computational
improvements in anterior LPFC (see below for examples of
how, e.g., greater gray-matter volume in LPFC may enhance
the computations underlying RITL).

Recent methodological innovations in RITL research

RITL is a complex cognitive behavior and, as such, it is
difficult to effectively isolate its subcomponents in
laboratory-based experimental studies. For instance, one
may want to separate the processes that are specific to the
acquisition of task rules (e.g., the “instructions”) from those
that are specific to their application. Recently developed
RITL experimental designs typically solve this problem by
dividing each trial into two separate phases, an encoding
phase, in which a new task is communicated through a
prearranged notation (e.g., three words describing three
consecutive mental operations to perform), and an execution
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phase, in which the task-specific stimuli are presented and
participants can perform the instructed task.

The most challenging methodological problem with in-
vestigating RITL, however, is the need to statistically ana-
lyze novel task behaviors when even a single repetition of
the same task invalidates its novelty (Rabbitt, 1997). Recent
innovative experimental designs have overcome this prob-
lem by observing the first trials of a variety of different
tasks, and then pooling across these first trials to infer the
general properties of RITL across tasks (Cohen-Kdoshay &
Meiran, 2009; Cole, 2009; Cole, Bagic, Kass, & Schneider,
2010; Dumontheil, Thompson, & Duncan, 2011; Hartstra,
Kühn, Verguts, & Brass, 2011; Ruge & Wolfensteller, 2010;
Stocco, Lebiere, O’Reilly, & Anderson, 2010, 2012). For
instance, Ruge and Wolfensteller constructed a variety of
novel stimulus–response tasks by pairing novel stimuli in
each task with simple responses reused across tasks
(Fig. 3A). For instance, participants might be instructed to
respond with the left hand when a novel star shape or a
novel spiral shape is presented and to respond with the right
hand when a novel triangle-like shape or a novel circle-like
shape is presented (with the tasks necessarily being novel,
given that the stimuli are novel). In contrast, in Cole, Bagic,
etal.’s (2010) study, each task consisted of three cognitive

rules (out of 12 possible) to be performed in a fixed order,
such as “If the answer to ‘Is it sweet?’ [Rule 1] is the same
for both [Rule 2] words, press your left index finger [Rule
3]” (Fig. 3B). By varying the included rules, the authors
were able to create a pool of tasks (rule sets) that consisted
of distinct procedures, yet were still comparable. Similarly,
Stocco etal. (2012) used tasks created from sets of mathe-
matical operations (e.g., divide by 2, multiply by 3, then add
1) and focused their analyses on tasks that consisted of
novel combinations of such operations.

Importantly, a subset of these studies (Cole, 2009; Cole,
Bagic, etal., 2010; Hartstra etal., 2011; Stocco etal., 2012)
also utilized another methodological innovation: the inclu-
sion of an additional set of tasks that had been practiced in a
prior session. The inclusion of these control tasks provided
an important baseline, enabling the assessment of processes
specific to RITL, while controlling for generic processes
that might be engaged prior to and during performance of
practiced tasks. Note that it is possible that these contrasts
might pick up on differences that are also present between
moderately practiced and extensively practiced task
switches (Yeung & Monsell, 2003); it will be important for
future research to explore this possibility. Furthermore, it is
possible that the ability to use the same stimuli among a

A) B)

C) “Knife the sweet potatoes”

Fig. 2 RITL is present but limited in nonhuman primates. (A)Cromer
etal. (2011) recently showed that macaque monkeys can perform
something similar to concrete RITL. The figure illustrates two stimu-
lus–response (object–saccade) associations that the monkeys had to
learn across multiple trials. They were able to rapidly learn these, and
other, new stimulus–response associations via feedback. However,
they were only able to do so when there was no interference between
stimulus–response associations (i.e., the stimuli were never reused).
Note that it is unclear whether this is truly RITL, since no instructions
were given before presenting the first stimulus of each task, yet it
suggests that monkeys may be capable of concrete RITL. (B)

Furthermore, unlike humans, macaque monkeys took 20 trials to reach
90% accuracy. Humans were at 90% on the first trial in Ruge and
Wolfensteller (2010) and Cole, Bagic, etal. (2010). Also note that the
macaques required months of training on the ‘metatask’ that specified
the timing, kinds of stimuli, and so forth, while this took seconds to
minutes for the humans tested by Cole and colleagues (Cole, Bagic, et
al., 2010; Cole, Etzel, etal., 2011). (C)In contrast to macaque monkeys,
a bonobo named Kanzi was able to perform first-trial RITL at 70%
accuracy using verbal instructions (Savage-Rumbaugh etal., 1993),
suggesting that evolutionary changes toward RITL abilities developed
gradually on the path to the evolution of Homo sapiens sapiens
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wide variety of tasks in these paradigms (in contrast to
Ruge & Wolfensteller’s, 2010, procedure) might add
additional processes that would need to be explored
further (Rubin & Meiran, 2005). Nonetheless, these
studies have consistently shown that anterior, middle
(dorsolateral or ventrolateral), and posterior regions of
LPFC all contribute to RITL. It will be important for
future work to identify the unique contributions that
each portion of LPFC makes to RITL abilities.

Key distinctions in RITL research

In this section, we review some of the fundamental distinc-
tions in RITL research covered here. We suggest that further
characterization of these and other distinctions will be im-
portant for future progress in RITL research.

Form of communication: Nonlinguistic versus linguistic
RITL The existence of nonlinguistic RITL (see above)
and the observation that lesions in LPFC can impair
RITL without impairing linguistic abilities (Luria, 1973)
demonstrate that language is not necessary for RITL.
Nonlinguistic RITL involves learning through examples.
For instance, imitation leads to RITL via simply copying
the observed behavior of someone else, and this may be the
most extensively studied form of RITL to date (Heyes,
2001). Imitation is highly related to ‘emulation,’ in which
the intentions/goals are copied rather than the specific
motor movements (Byrne & Russon, 1998). In contrast,
linguistic instructions utilize symbolic representations to
communicate task procedures. These forms of RITL com-
munication likely involve some shared and some distinct
cognitive and brain processes. Furthermore, there are
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GREEN
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Task 1 Description:
If the answer to ‘is it SWEET?’ 
is the SAME for both words,
press your LEFT INDEX finger

Task 2 Description:
If the answer to ‘is it LOUD?’ 
is the SAME for both words,
press your LEFT MIDDLE finger

Task 64 Description:
If the answer to ‘is it GREEN?’ 
is yes for JUST ONE of the words,
press your LEFT INDEX finger
[opposite finger on same hand  if false]

3 seconds 2-6 second
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Fig. 3 ‘Concrete’ and ‘abstract’ approaches to investigating RITL.
Two major approaches have been developed for investigating RITL,
both of which overcome the inherent difficulty of investigating task
novelty when a single task repetition invalidates a task’s novelty. (A)
Ruge and Wolfensteller (2010) achieved repeated-task novelty by
using a large set of unique stimuli (with a small set of responses),
making it possible to compositionally build a large set of novel stim-
ulus–response associations. Hartstra etal. (2011) developed a similar
method using object stimuli and object–color pairings. These
approaches rely on concrete stimulus–response pairings rather than
on more abstract concepts, and thus constitute what might be called
‘concrete RITL.’ Note that the Ruge and Wolfensteller paradigm could
not differentiate RITL responses from those due to stimulus novelty

and/or task switching (though their analysis correlating instruction
activity with later performance was helpful in this respect). (B)Cole,
Bagic, etal. (2010) achieved repeated-task novelty by combining 12
rules into many unique sets (i.e., 64 tasks). This approach allowed for
an important ‘practiced’ control condition, in which a subset of tasks
were highly practiced. Contrasting novel to practiced conditions
allowed control for rule/stimulus novelty and task switching, permit-
ting the experimenter to isolate processes specific to task novelty (i.e.,
the unique combination of rules). Stocco etal. (2012) used a similar
approach with algebraic rules. These approaches use unique combina-
tions of abstract rules to investigate RITL, and so could be called
‘abstract RITL.’
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advantages to each form of RITL communication, depend-
ing on the particular task to be learned (see below).

Level of abstraction: Concrete versus abstract RITL Ultimately,
we are embodied creatures. Therefore, concrete (i.e., em-
bodied/sensory–motor) tasks are likely processed differently
from abstract tasks. Concrete tasks specify a limited but
exact set of percept–action associations. In contrast, abstract
tasks specify a less limited but typically inexact set of
percept–action associations. For example, the relatively con-
crete task “point left when you see a red hat” is quite exact
(i.e., nearly the entire percept–action scenario is specified),
yet those instructions are limited to one small set of scenar-
ios. In contrast, the relatively abstract task “point left when
you see clothing” is less exact, but it applies to a wider
variety of scenarios. Thus, abstract task instructions and rep-
resentations can be considered to be compressed (in an
information-theoretic sense; Gray & Tall, 2007). Importantly,
concrete tasks are more readily communicated via imitation
(nonlinguistic RITL), while abstract tasks are more readily
communicated via language. See Ruge and Wolfensteller
(2010) for an example of concrete RITL, and Cole, Bagic, et
al. (2010) for an example of abstract RITL. Note that the use of
novel stimuli for concrete RITL may allow for less proactive
interference (negative transfer) than the reuse of rules across
task contexts in abstract RITL. However, such reuse of rules
may alternatively result in positive transfer (from greater prac-
tice with them), effectively facilitating performance. Further
research will be necessary to explore this issue.

Level of complexity: Simple versus complex RITL Task com-
plexity is another potentially important distinction between
the Ruge and Wolfensteller (2010) and Cole, Bagic, etal.
(2010) studies. Ruge and Wolfensteller only included non-
integrated rules (i.e., rules that could be executed indepen-
dent of one another), while Cole, Bagic, etal. included three
integrated rules for each task. This additional complexity
likely led to an additional multirule integration process in
Cole, Bagic, etal.’s study. Future work will be necessary to
dissociate complexity from abstraction effects in RITL,
which were confounded across the two studies. It would
be possible to deconfound these two dimensions, for in-
stance, by using novel multistep spatial routes (an example
of concrete complex RITL). Note, however, that the Ruge
and Wolfensteller paradigm likely involved an integration
process between the constituent stimulus and response rep-
resentations of each task, such that the differences with
Cole, Bagic, etal. may have been more of degree (greater
complexity) than of kind (simple vs. complex).

Task preparat ion stage: Instruct ion versus ini t ia l
implementation Recent research has suggested the presence
of distinct phases of task preparation during RITL (Cole,

Bagic, etal., 2010; Stocco etal., 2012). These stages are
similar to the ‘cue’ and ‘target’ stages in the task-switching
literature (Monsell, 2003; Ruge, Jamadar, Zimmermann, &
Karayanidis, 2011), though there is strong evidence that
RITL is distinct from typical forms of task switching (see
below). During the instruction stage, a novel task set must
be communicated by an instructor and interpreted by the
learner. This interpretation process likely involves activation
of the proper task semantics (e.g., motor representations of
‘point left’ and visual representations of ‘red hat’). During
the initial implementation stage, the task is executed in
response to a stimulus for the first time. In some cases
(especially during abstract RITL), preparation likely contin-
ues during initial task implementation, as the stimulus
allows for more concrete specification of the task procedure
that is to be executed.

RITL versus typical task switching: Task set formation ver-
sus task set retrieval The vast majority of task-switching
experiments have involved switching among a very small
number of highly practiced tasks. These typical task-
switching paradigms are thought to involve a task set re-
trieval process from long-term memory (Mayr & Kliegl,
2000), yet such a process is impossible with RITL, since
the tasks are novel by definition. Other “task reconfigura-
tion” processes may be shared between RITL and typical
task switching, however. Such processes are important con-
stituent parts of RITL, yet identifying the component pro-
cesses that are unique to RITL is essential for understanding
RITL as an independent cognitive construct. Recently de-
veloped RITL paradigms have sought to identify such com-
ponents, by utilizing practiced in contrast to strictly novel
tasks in order to effectively isolate RITL from processes that
are not unique to RITL (Cole, Bagic, etal., 2010; Stocco et
al., 2012). In addition to generic task-switching processes,
these paradigms also controlled for stimulus novelty and
peculiarities about the specific task rules used. These
designs are able to control for these processes by using the
same rules across novel and practiced tasks, yet using novel
(i.e., never before seen or executed) combinations of those
rules for RITL trials, and practiced (i.e., repeatedly per-
formed) combinations for the control condition. Recent
work (Cole, Bagic, etal., 2010; Cole & Braver, 2012) has
suggested that RITL involves a unique ‘task set formation’
process that leads to an integrated task set that can then be
later retrieved during practiced task preparation (i.e., during
typical task switching). Further research will be necessary to
fully characterize the similarities and differences between
these two modes of task preparation. For instance, it will be
important to explore differences in the amounts of between-
task interference (caused from stimulus reuse) across RITL
and typical task switching (Ruge et al., 2011), as well as
between different RITL experimental paradigms.
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LPFC processes underlying RITL

The original neuropsychological studies of RITL raised the
important question of what specialized processes are imple-
mented in LPFC during RITL. Modern neuroimaging is
allowing us to begin addressing this question. For instance,
Ruge and Wolfensteller (2010) found that a large portion of
LPFC is involved in RITL, but that regions within LPFC
differentiate as initially novel stimulus–response rules become
practiced. Specifically, Ruge and Wolfensteller found that
activity in several anterior LPFC regions (among others) was
high in the initial trials but decreasing with rule repetition,
while more posterior LPFC regions (among others) increased
their activity with rule repetitions. This suggests an anterior-
to-posterior shift in task control with practice.

This observation may indicate an anterior-to-posterior
gradient of abstraction (and/or complexity) within LPFC
(Badre & D’Esposito, 2009; Fuster, 2001; Koechlin, Ody,
& Kouneiher, 2003). Under this interpretation, task repre-
sentations begin as highly abstract rules in anterior and
middle LPFC (i.e., dorsolateral prefrontal cortex), which
are converted to concrete representations for implementa-
tion by posterior LPFC (i.e., premotor cortex) and sensory–
motor regions. In the case of Ruge and Wolfensteller (2010),
this shift could go back quite far toward the concrete end of
the abstraction gradient (into posterior LPFC, primary mo-
tor, and sensory cortices), likely because the tasks consisted
of highly concrete stimulus–response associations (Fig. 3A).

In contrast, the tasks used by Cole and colleagues (Cole,
2009; Cole, Bagic, etal., 2010) and Stocco etal. (2012) were
highly abstract. For instance, Cole and colleagues’ tasks
consisted of combinations of three rule types that had to
generalize across dozens of stimuli (Fig. 3B). Consistent
with an anterior-to-posterior gradient of abstraction within
LPFC, Cole, Bagic, etal. found that LPFC activity during
task implementation shifted from anterior to middle LPFC
with practice. In other words, there was still an anterior-to-
posterior shift in task control with practice, but this shift
occurred between more anterior LPFC regions than in Ruge
and Wolfensteller’s study, perhaps because Cole, Bagic, et
al.’s tasks were more abstract (Fig. 4).

Also consistent with the anterior-to-posterior gradient of
abstraction within LPFC, Cole, Bagic, etal. (2010) looked at
a finer (within-trial) time scale and found, using both mag-
netoencephalography and functional MRI, that activity
flowed from middle to anterior LPFC during RITL. This
could reflect relatively concrete task information within
middle LPFC (e.g., ‘is it sweet?’, ‘are they the same?’, and
‘press left index finger’) being compositionally combined
into more abstract/integrative task information within ante-
rior PFC (e.g., the ‘press your left index finger if both
objects are sweet’ task) during novel task preparation in
order to coordinate task rules. Importantly, Cole, Bagic, et
al. found that this pattern reversed once a task became
practiced: Activity flowed from anterior to middle LPFC
during practiced-task preparation. This suggests that

Middle LPFC

Practiced

Anterior LPFC

Novel

Posterior LPFC

Practiced

Middle LPFC

Novel

Concrete RITL
(Ruge & Wolfensteller, 2010)

Abstract RITL
(Cole, Bagic et al., 2010)

A) B)

Fig. 4 Evidence for an anterior-to-posterior LPFC gradient in RITL.
(A)Ruge and Wolfensteller (2010) demonstrated that concrete RITL
implementation-related activity shifted from anterior to posterior with
practice. This may reflect the need to integrate task-relevant represen-
tations within more anterior LPFC regions during RITL, which can
then shift more posteriorly as specific task-relevant connections are
selected and strengthened with practice. Alternatively, this may be
conceptualized as instruction-driven (novel-task) processes being more
abstract and being converted to more concrete/pragmatic representa-
tions with practice—consistent with an anterior-to-posterior gradient of
abstraction within LPFC. (B)As with concrete RITL, Cole, Bagic, etal.

(2010) demonstrated that abstract RITL implementation-related activ-
ity also shifted from anterior to posterior with practice. In contrast to
concrete RITL, however, the activity started (before practice) and
finished (after practice) in more anterior portions of LPFC. This may
reflect the greater overall abstraction of the learned tasks, consistent
with an anterior-to-posterior gradient of abstraction within LPFC. Note
that the “abstract” RITL paradigm was also more complex than the
“concrete” RITL paradigm, leaving open the possibility that the
anterior-to-posterior gradient reflects complexity rather than
abstraction
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familiarity with a task changes preparation, such that an
abstract/integrative task representation (likely recalled from
long-term memory) is used to activate and coordinate more
concrete representations for task implementation.

Subcortical contributions to RITL

RITL processes are also present outside LPFC. One poten-
tially important set of locations for RITL-related processes
is the basal ganglia. The caudate nucleus, midbrain dopa-
mine nuclei, and other parts of the basal ganglia have been
associated with procedural learning and the acquisition of
new skills. Single-cell recording in primates learning new
rule-based tasks, for instance, suggested that caudate
responses anticipate responses in LPFC and mediate the
acquisition of new behaviors (Pasupathy & Miller, 2005).
In humans, Ruge and Wolfensteller (2010) found that cau-
date activity during novel trials predicted the amount of
learning (measured by decreases in reaction times) for sub-
sequent repetitions of the same task.

The basal ganglia (including the striatum and the mid-
brain dopamine nuclei), however, are also thought to play an
important role in controlling/modulating LPFC activity. In
particular, it has been suggested that these regions rapidly
select and gate the flow of signals from posterior sensory
and motor cortical areas to LPFC (Braver & Cohen, 2000;
McNab & Klingberg, 2008; Stocco, Lebiere, & Anderson,
2010; see O’Reilly & Frank, 2006, for a detailed computa-
tional model of this process). Thus, basal-ganglia involve-
ment in RITL may extend beyond a simple associative role
in learning. The capacity to rapidly gate information to
LPFC becomes particularly useful when novel tasks must
be learned and executed in a single trial, as with first-trial
RITL. Supporting this view, Stocco etal. (2012) analyzed a
first-trial RITL experiment, explicitly searching for regions
whose activity selectively increased during the execution of
novel tasks and carefully excluding those regions whose
involvement could be ascribed to either stimulus novelty
or task difficulty alone. In addition to LPFC and posterior
parietal cortex, the results identified the basal ganglia as a
key contributor to the execution of newly instructed tasks.

The key role of another subcortical region—the hippocam-
pus—in long-term memory encoding makes this region likely
to be important for the transition from novel- to practiced-task
performance. This region might also have a more direct role in
RITL, however: Some theories have suggested that hippocam-
pus may also be important for working memory of task sets,
especially when tasks are novel (Hasselmo & Stern, 2006) and
when they consist of conjunctions of rules or sensory/motor
representations (O’Reilly, Braver, & Cohen, 1999). This seems
to suggest a critical role for hippocampus in RITL, yet it is clear
that hippocampus is unnecessary for RITL, given that hippo-
campal lesion patients can perform RITL. For instance, patient

H.M. was able to use RITL to learn and coordinate the rules of
a mirror-tracing task, despite an inability to encode those rules
in long-term memory (Squire, 2009). Furthermore, it was
shown in a large group of lesion patients that those with
hippocampal lesions (along with patients with a variety of other
lesions) could use RITL to learn and coordinate a complex set
of rules for a visual maze task, while only those with LPFC
lesions could not (Milner, 1965).

The cognitive control network’s role in RITL

LPFC is strongly connected with a set of cortical regions
sometimes referred to as the fronto-parietal cognitive control
network (Cole & Schneider, 2007; Dosenbach etal., 2006;
Duncan, 2010; Wager, Jonides, & Reading, 2004). This net-
work is thought to be composed of the majority of LPFC,
anterior cingulate/presupplementary motor area, posterior pa-
rietal cortex, anterior insular cortex, and sometimes posterior
middle temporal cortex. These regions are coactive across a
wide variety of studies (Wager etal., 2004) and are more
correlated at rest than is the whole brain on average (Cole &
Schneider, 2007). Although the regions can be dissociated
using task functional MRI (Cole & Schneider, 2007) and high
connectivity thresholds (Dosenbach etal., 2007), they are
more often coactive and connected with each other than with
sensory–motor or “default-mode” regions (Fox etal., 2005).
This suggests that if LPFC is central to RITL, then all or most
of the cognitive control network may be as well.

In surprising contrast to this argument, RITL functional
MRI studies to date have indicated that little of the control
network is involved in RITL specifically. For instance,
when looking relative to a resting baseline (see Cole,
2009), the entire control network was active during both
novel and practiced conditions for Cole, Bagic, etal. (2010).
However, of the control network regions, only LPFC and
posterior parietal cortex were selectively active for RITL
relative to practiced tasks. Hartstra etal. (2011) found an
even more restricted portion of the control network—left
posterior LPFC—when looking for RITL versus practiced
activations. In contrast, Ruge and Wolfensteller (2010)
found a change in the entire control network between
RITL and practiced-task performance. Importantly, howev-
er, they found that activity in only LPFC and posterior
parietal cortex (along with the caudate) correlated with
behavioral improvement between RITL and practiced-task
performance, suggesting that these regions were especially
important during the learning process. Note that Dumontheil
etal. (2011) found increases in activity for the entire control
network for large versus small instruction sets during RITL,
yet it is difficult to interpret this result, given that this
contrast did not control for short-term memory load (the
number of task rules) and for several other factors controlled
for in the other RITL studies. Together, these studies suggest

Cogn Affect Behav Neurosci (2013) 13:1–22 9



that only a portion of the control network—including LPFC
and posterior parietal cortex—involves processes specific to
RITL. It will be important for future research to more
directly test this conclusion, however, using region-of-
interest analysis and statistical dissociations (Henson,
2005). It will also be important to assess the shared and
distinct contributions that these two regions make to RITL
and to other forms of flexible cognitive control.

Integrative theoretical account of RITL

A compositional theory of flexible cognitive control

It is not clear exactly how the existing cognitive neurosci-
entific studies of RITL relate to one another. In an attempt to
help unify these cognitive neuroscientific observations, we
here describe a new theoretical model of flexible cognitive
control that provides a mechanistic account of RITL. We
focus primarily on the core principles (in italics; described
in Table 1) underlying this theory, with the expectation that
future work will make more concrete (i.e., mathematical or
computational) implementations of the theory based on
these principles.

The key principle of the theory, primarily derived from
observations by Cole, Etzel, Zacks, Schneider, and Braver
(2011) and Reverberi, Görgen, and Haynes (2012), is com-
positionality (see also O’Reilly, Braver, & Cohen, 1999).
This is the ability to reuse representations in concert with a
variety of other representations (Fig. 5). This ability leads to
immense flexibility, as it allows for massive combinatorics
of possible representational sets. For instance, just 100 con-
cepts can be combined into 4,950 possible pairs or 161,700
triplets (formula for the combinations: n! k! n� k!ð Þ½ �= ).

Healthy adult humans have tens of thousands of concepts
ready to be combined (Biederman, 1987), suggesting that
billions of combinations are possible. An ability to access
such a large set of possible conceptual and procedural con-
figurations is essential for the proposed architecture, given
the immense variety of possible tasks that healthy humans
are capable of learning via RITL.

What possible neural architecture could provide the rapid
compositional updating necessary to account for RITL?
Some evidence has come from Cole, Etzel, etal. (2011),
who found compositional coding within human LPFC dur-
ing RITL (Fig. 5C). They found this by training multivariate
classifiers (cf. Norman, Polyn, Detre, & Haxby, 2006) on
LPFC functional MRI activity patterns to identify task rules
during practiced task performance, then showing that these
classifiers could identify the constituent rules involved dur-
ing RITL (novel rule combinations). This finding in LPFC is
consistent with the unanimous involvement of LPFC in
recent RITL functional MRI studies (Cole, Bagic, etal.,
2010; Dumontheil etal., 2011; Hartstra etal., 2011; Ruge
& Wolfensteller, 2010). This finding points to another im-
portant principle of the theory (directly related to the prin-
ciple of compositionality): immediate transfer (Fig. 6). This
concept emphasizes the benefits of prior experience with the
constituent task-relevant rules in rapidly learning a new task
(Cole, Etzel, etal., 2011; Kieras & Bovair, 1986; Singley &
Anderson, 1989). Here, the compositional reuse of relevant
sets of practiced task features facilitates RITL.

We suggest that two properties of LPFC make it ideal for
implementing the rapid compositionality necessary for
RITL: (1)rapid updating of activity and connectivity pat-
terns, due to gating by dopamine and/or other basal ganglia
signals (Braver & Cohen, 2000; McNab & Klingberg, 2008;
O’Reilly & Frank, 2006; Stocco, Lebiere, & Anderson,

Table 1 Basic principles of the compositional theory of flexible cognitive control

Principle Description

Compositionality The ability to reuse representations with a variety of others, resulting in massive combinatorics
of possible representational combinations for task learning. All of the theory’s principles are
ultimately tied to the compositionality of representations and how this benefits cognitive
flexibility.

Immediate transfer The combination of practiced rules into novel configurations, resulting in novel-task performance
benefiting from previous practice.

Abstraction The compositional grouping of representations (including feature subsets of full representations)
into categories. The activation of such feature subsets of one concept can then take part in
representing a different concept. This is highly related to compositionality and facilitates transfer.

Analogy The recognition of similarity between two or more representations. This allows selection of features
common among those representations to form an abstraction, which can then
transfer to new tasks during RITL.

Compositional hierarchy A series of representations, ultimately based on simple sensory–motor features, building upon each
other in stages, with increasing abstraction and/or complexity at each stage. Lower-level
representations in such a hierarchy can be compositionally combined and coordinated by higher-level
(abstract and/or complex) representations to create novel task sets during RITL.

10 Cogn Affect Behav Neurosci (2013) 13:1–22



2010; Stocco etal., 2012), and (2)high global connectivity
(Cole, Anticevic, Repovs, & Barch, 2011; Cole, Pathak, &
Schneider, 2010) resulting in latent connectivity (previously
unused connections and connection patterns that can quickly
come into use when necessary; Fig. 6), allowing for a
combinatorial explosion of possible active connectivity pat-
terns across a wide range of possible task semantics.

Another important aspect of LPFC is its ability to represent
rules and other abstract concepts (Haynes etal., 2007; Wallis,
Anderson, & Miller, 2001). Abstraction is defined here as the
grouping of representations or representational features into
categories, allowing for the activation of a subset of represen-
tational features of one concept in representing a different
concept. For instance, the abstract concept ‘circle’ is a cate-
gory defined by a common set of subfeatures that have been
extracted across many instances of perceiving specific imper-
fect circles (e.g., uniform roundness). Alternatively, a different

sort of abstraction (a “policy abstraction”; Badre &
D’Esposito, 2009) such as ‘make coffee’ is a category
defined by several related sets of action representations,
with each set able to lead you to make coffee in a different
situation (e.g., one action set might involve grinding coffee
beans, while another might not). These examples can also
be conceptualized in terms of LPFC having broad
(categorical) receptive fields (Seger & Miller, 2010).
Abstraction is clearly a critical feature of a compositional
architecture, given that its definition is nearly identical to
that of compositionality itself (i.e., the ability for a repre-
sentation to be meaningfully applied across multiple situa-
tions). Abstractions are further related to compositionality
in that abstractions are likely built from the compositional
combination of features constituting the range of a given
abstraction-representing neuron’s receptive field (e.g., all
relevant cat-like features for representing “cat”).
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(Reverberi et al., 2011)
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Fig. 5 Compositional coding of task rules within LPFC. (A)Compo-
sitional coding allows activity patterns to remain intact when combined
(top), in contrast to independent coding (bottom). Compositional cod-
ing may allow for constituent-rule practice—incremental shaping of
activity patterns to effectively implement the rules—to transfer rapidly
to novel rule combinations during RITL. (B)In order to localize
compositional-rule coding, Reverberi etal. (2012) used constituent-
rule activity patterns (e.g., Rule A and Rule B) to predict compound-
rule activity patterns (e.g., Rule AB). Of the entire brain (using search-
light analysis), only LPFC showed statistically significant composi-
tional coding. Figure 5A and B areadapted from “Compositionality of
Rule Representations in Human Prefrontal Cortex,” by C. Reverberi,
K. Görgen, and J.-D. Haynes, 2012, Cerebral Cortex, 22, pp.1237–
1246. Copyright 2012 by the authors. Adapted with permission. (C)

The hypothesis that compositional coding in LPFC allows for transfer
from practiced to novel/RITL conditions was tested directly by Cole,
Etzel, etal. (2011). See Fig. 3B for the cognitive paradigm used in this
study. LPFC activity pattern classifiers were trained to discriminate
four rules (six comparisons) using a set of highly practiced tasks (rule
combinations). These classifiers were then tested using a set of com-
pletely novel tasks, and five of the six classifications were statistically
significant (p < .05). This result suggests that LPFC coding is compo-
sitional and is transferred from practiced- to novel-task contexts.
Adapted from “Rapid Transfer of Abstract Rules to Novel Contexts
in Human Lateral Prefrontal Cortex,” by M.W. Cole, J.A. Etzel, J.M.
Zacks, W. Schneider, and T.S. Braver, 2011, Frontiers in Human
Neuroscience, 5:142. Copyright 2011 by the authors. Adapted with
permission
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Note that posterior cortical regions outside LPFC (i.e.,
in the temporal, parietal, and occipital lobes) build and
represent abstractions as well (Kiehl etal., 1999), and that
both concrete (Fuster, Bauer, & Jervey, 1985; Pouget,
Emeric, Stuphorn, Reis, & Schall, 2005) and abstract
(Muhammad, Wallis, & Miller, 2006) representations are
projected from posterior cortex to LPFC, such that ex-
tensive representational redundancy exists across these
posterior and LPFC systems. Critically, the theory differ-
entiates these systems by characterizing posterior cortex
as representing the semantics of the external world, in
contrast to LPFC organizing representations in terms of
task/goal relevance. This, along with rapid updating and
latent connectivity, makes novel task-relevant cognitive
configurations (largely unconstrained by established se-
mantics/experience) readily available in LPFC during
RITL and other situations requiring flexible cognition,
while allowing established semantics of the external
world to remain intact within posterior cortex. Due to
the bidirectional connectivity between LPFC and posteri-
or representations (Fuster etal., 1985), activated represen-
tations are distributed across both systems, allowing for
simultaneous activation of rich (yet overconstrained) se-
mantics in posterior cortex and flexible (yet undercon-
strained) representations within LPFC.

Abstraction, compositionality, and transfer are highly
related to the concept of analogy—“the perception of like
relational patterns across different contexts, p.35”
(Gentner & Colhoun, 2010). As the circle example above
illustrates, analogy among multiple instances of imperfect
circles can lead to mappings among the common ele-
ments between the circles, creating an abstract represen-
tation of “circle” that can generalize to new instances,
allowing knowledge learned about circles to transfer to
new contexts (i.e., to new circles or things similar to
circles—e.g., spheres). We suggest that such analogical
mapping and the resulting abstract representation
(Gentner & Medina, 1998) can occur within LPFC (in
concert with other brain regions), leading to the ability to
immediately transfer knowledge and skills during RITL.
Identification of analogical similarity between existing ab-
stract representations and a novel task (e.g., via keywords
during instruction) is also an important part of this process.

There is evidence that LPFC neuron receptive fields
include a variety of nonintuitive variants of task-relevant
rules (Jun etal., 2010; Rigotti, Rubin, Wang, & Fusi, 2010),
such as “is green” being partially represented by neurons
that fire most to “not red.” This suggests that the flexibility
necessary for RITL may arise in part from coarse-coded
conjunctive representations (O’Reilly, Busby, & Soto, 2003;
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Is 
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Left 
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Is 
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Green Not red Left Button Red

Practiced (inactive & strong)
Novel (active & weak)

Latent (inactive & weak)
Practiced + transferred (active & strong)

Task1 (practiced) = “Press the left button when you see green”
Task2 (novel) = “Press the left button when you see red”

(B)
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Fig. 6 RITL-capable theoretical model. A portion of LPFC (receiving
midbrain dopamine and other basal-ganglia [BG] projections) is
depicted, with groups of neurons illustrated as ovals, some of which
are labeled with their receptive fields (representations). Each level is a
distinct portion of LPFC (top, anterior; bottom, posterior) in a general
processing hierarchy. Task1 has been extensively practiced, while
Task2 is novel—requiring RITL capabilities. Note that connection
activation levels are important for task set activation, and stronger
connections are more readily activated and maintained. RITL (Task2)
is implemented by (A, right)the dopamine system (substantia nigra
[SN] and ventral tegmental area [VTA]) and by the rest of the BG
predicting reward and signaling LPFC to update its active connections
(rapid updating); incoming cortico-cortical connections activated by

instructions (not depicted) activate the appropriate task semantics, and
(B)latent integrating representations become active (via latent connec-
tivity) to facilitate synchrony/binding of representations. Composition-
al reuse of previously practiced task rules(C) facilitates RITL via
transfer of connection strengths (and connection accuracy) to facilitate
task set activation. RITL with a variety of other tasks is possible due to
extensive combinatorics of the latent connections(D). Note that many
details were simplified here for illustrative purposes (e.g., receptive
fields are likely quite complex; relational units should specify green→
left button rather than just an association; and coding should be more
coarse—that is, neurons at the top are not necessarily fully dedicated to
each task)
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Rigotti etal., 2010) formed from the combination of var-
ious semi-task-relevant abstract representations into task
sets. It has been suggested that this kind of representa-
tional binding occurs via the synchrony/coactivation of
neurons with relevant receptive fields (Fries, 2005).
Another account has suggested that representational bind-
ing occurs via activation of (and feedback from) higher-
level conjunction neurons (O’Reilly & Rudy, 2001). We
posit that these two mechanisms of binding—synchrony
and conjunction—are in fact complementary mechanisms,
in which feedforward synchrony can activate higher-level
conjunctions and feedback activation of conjunctions can
lead to lower-level synchrony in a representational hier-
archy (see Table 1), resulting in the binding of represen-
tations via both mechanisms. These principles of the
theory are similar to those used in a previous computa-
tional model of “compositional connectionism” (Hummel
etal., 2004). It will be important for future research to
verify the exact mechanisms underlying rapid feature
binding (sometimes called ‘variable binding’) during
RITL, however.

In sum, this theoretical model can be conceptualized as a
specific form of domain-general working memory that
emphasizes rapid updating, compositionality, and combina-
torics of the representations within task sets. Another way to
conceptualize the proposed model is as a projection of many
posterior cortical representations (i.e., perceptual, motor,
semantic, and long-term memories) to LPFC (see
Dehaene, Kerszberg, & Changeux, 1998), in which billions
of combinations of those representations are functionally
available for selection and goal-directed sustained process-
ing at a moment’s notice. The theory postulates that having
this extra space for representations to interact combinatori-
ally provides the human brain with an immensely flexible
architecture capable of such computational feats as first-trial
RITL.

Specific mechanisms of the compositional theory

Of the principles outlined above, the rapid updating and
global connectivity of LPFC are perhaps the most con-
cretely mechanistic. Building on these mechanisms

Table 2 Mechanistic principles of the compositional theory of flexible cognitive control

Principle Description

Multisystem global connectivity LPFC connectivity with many content-specific systems throughout the brain, giving access
to many potentially task-relevant representations.

Rapid updating A fast change of active content within LPFC, likely via a mechanism (basal ganglia) that
gates instruction information (from posterior cortex).

Within-LPFC global connectivity Extensive connectivity between neurons within LPFC, allowing for complex processing and
latent connectivity (see below).

Latent connectivity Unused connections and connectivity patterns that can become used as necessary by novel
tasks during RITL.

Coarse-coded conjunctive representations A large set of neurons with broad receptive fields that receive inputs from (potentially random)
combinations of each other, to produce many conjunctive receptive fields. This allows for
representational binding, general processing (see below), and the other principles considered here.

Synchrony/ coactivation Binding via synchronous coactivation of multiple representations, allowing for rapid selection
(see below) of sets of representations to achieve massive combinatorics during RITL.

Incremental selection Slow, multi-trial selection and tuning of task-representing neurons and connections for optimizing
task performance from practice. Transfer of subsets of these neurons and connections to new
tasks facilitates RITL.

Rapid selection Fast selection of novel representations and (previously incrementally selected) representations from
practiced tasks during RITL.

General processing hierarchy Specific instantiations of a “compositional hierarchy” (see Table 1). This consists of many
connected neural populations, building a wide variety of representations via conjunctions, unions,
and other set theory operations, ultimately based on primitives in primary sensory–motor cortices.
Due to wiring costs that promote short-distance connectivity, this results in multiple hierarchies of
processing, starting from primary cortices and going outward anatomically in terms of complexity
and abstraction. We focus on the general processing hierarchy within LPFC.

Hierarchical conservation A bias to incrementally select and strengthen more posterior (lower-level) representations of a task
during practice.

Population adaptive coding The ability of LPFC as a whole to represent a wide variety of possible tasks. This is accomplished
by compositionally selecting sets of individual neurons, each with relatively static and coarse
coding, that together specify the processes necessary to implement each specific task.

These principles differ from those presented in Table 1 in that these are less abstract, such that we consider these principles to be readily
implementable in computational models
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(Table 2), our theory proposes that RITL starts with a
working memory encoding event in which (1)dopamine
and/or basal ganglia signals (e.g., from reward prediction)
interrupt the current task state and allow rapid updating of
LPFC representations, and (2)instructions are converted
into task semantics via distributed domain-specific seman-
tic representations in posterior cortex that activate sets of
equivalent (and/or more abstract/complex) semantics with-
in LPFC via its extensive multisystem global connectivity
(Cole, Pathak, & Schneider, 2010; Cole, Yarkoni, Repovs,
Anticevic, & Braver, 2012; Power etal., 2011).

The many sets of abstract/complex representations are
also made possible due to extensive within-LPFC global
connectivity—which has only recently been investigated
for the first time (Cole, Anticevic, etal., 2011)—that
likely allows for the building of sets of abstract/complex
features. This principle of the model is consistent with
recent nonhuman primate work demonstrating immense
variability in LPFC single-neuron receptive fields (Jun
etal., 2010), given that such observations could reflect
the building of abstract/complex representations via ex-
tensive within-LPFC connectivity.

There are clear capacity limits on working memory
(Conway & Engle, 1996; and, by proxy, on RITL and
LPFC), such that the tremendous combinatorics of possible
sets of coactivated features within LPFC may overwhelm
the system’s limited capacity as the appropriate configura-
tion is being searched for. The theory deals with this by
allowing sets of features distributed between LPFC and
posterior cortex to be incrementally selected, and connec-
tions among them to be strengthened over many trials dur-
ing prior experiences (i.e., to be ‘chunked’ via repeated use;
Hebb, 1949; Lynch, 2004), and then rapidly selected (and
coordinated within LPFC) with a limited number of other
features via activation of instruction semantics during RITL.
The reactivation of incrementally selected sets of features
allows for immediate transfer of previously learned abilities
as novel combinations of such feature sets are rapidly se-
lected during RITL. One important example of this process
is the incremental selection of associations between words
and rule meanings (i.e., selected and strengthened connec-
tions from language regions to LPFC), which can then be
rapidly selected by incoming linguistic instructions during
RITL. This aspect of the theory is consistent with a recent
formulation of working memory in which a distinction
exists between activated long-term memory (activation of
representations that were incrementally selected and/or
strengthened/refined during consolidation) and a ‘region of
direct access’ that is able to flexibly select and bind a variety
of possible novel representations (Meiran, Cole, & Braver,
2012; Oberauer, 2009).

It is theoretically possible for the building of abstract/com-
plex representations within LPFC to emerge from random

connectivity built upon sensory/motor primitives from poste-
rior cortex (Rigotti etal., 2010). There is evidence, however,
for a posterior-to-anterior hierarchy of processing or represen-
tation in LPFC (see the previous sections). It is possible that
this hierarchy supports efficient building of abstract/complex
representations used during RITL. However, controversy cur-
rently exists regarding the exact nature of this LPFC hierarchy
(Badre, 2008; Reynolds, O’Reilly, Cohen, & Braver, 2012):
Some studies have suggested that it is a processing hierarchy
organized by time or action (Botvinick, 2008; Koechlin etal.,
2003), while others have suggested that it is a representational
hierarchy organized by abstraction (Badre & D’Esposito,
2007). We suggest that LPFC builds abstract and complex
representations—which become processes when activated
(due to downstream effects of connectivity)—in a general
processing hierarchy. This avoids the current controversy by
subsuming the two camps: gradients of abstraction, complex-
ity, action, and time are all built using conjunctions of random
sets (and sets of sets) of sensory–motor primitives (ultimately,
from primary sensory–motor regions). Consider, for instance,
the general processing hierarchy illustrated in Fig. 6. From the
several primitives at the bottom of the chart (already some-
what built up from primitives in, e.g., V1), both abstractions
(e.g., ‘is green’) and complex task representations (e.g., “press
the left button when you see red”) are built. Representational
hierarchies of time and action are possible due to the existence
of temporal and motor primitives (i.e., neurons that fire for
particular event timings or motor movements) for building
upon in the hierarchy.

The observed anterior-to-posterior LPFC activation shift
with practice (see Fig. 4) can be accounted for by positing a
hierarchical conservation principle for the theoretical mod-
el. This principle suggests that the incremental selection
occurring during practice is biased toward selecting and
strengthening representations/connections lower in the gen-
eral processing hierarchy. Thus, while the initial RITL rapid
selection likely involves both high-level and low-level rep-
resentations, the representations involved can be whittled
down over time by incrementally selecting posterior repre-
sentations to more efficiently represent the task set. The
theory suggests that higher-level representations in anterior
LPFC are involved during RITL for two reasons: to allow
for (1)transfer via abstract representations in anterior LPFC
(see above) that can readily transfer rules across task con-
texts and (2)activation of a wide variety of ad hoc, coarse-
coded representations that together can represent the task
rapidly but inefficiently during RITL. With practice, abstract
representations (in anterior LPFC) can become less in-
volved, as more task-specific (in posterior LPFC) represen-
tations/connections become tuned and incrementally
selected to perform the task. In the case of an abstract or
complex task, the posterior shift cannot go very far, given
that anterior representations are necessary to represent such
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task sets even after connections are selected and tuned (see
Fig. 4B). In contrast, concrete stimulus–response associa-
tions (see Ruge & Wolfensteller, 2010) can become fully
automatic with enough practice (Schneider & Shiffrin,
1977), such that they can go all the way down the hierarchy
to sensory–motor cortices (Chein & Schneider, 2005;
Schneider & Chein, 2003). This suggests that there may be
three learning stages for concrete tasks, based on the states
of incrementally selected task representations: (1)RITL, (2)
controlled, and (3)automatic (Chein & Schneider, 2012).
The first stage involves instruction interpretation, ad hoc
coarse-coded representation, and transfer, whereas con-
trolled processing involves incremental selection and tuning
of representations, eventually resulting in highly efficient
automatic processing. It will be important for future research
to test these predictions and to better characterize the tran-
sitions between stages of skill acquisition.

The combinatorial explosion of possible tasks is a major
issue for neural theories of RITL, and several principles
postulated above may help. To illustrate the issue, consider
that a conservative estimate of 10,000 concepts available for
humans (Biederman, 1987) would result in over 160 billion
possible triplets for RITL (see the introduction of the com-
positional theory above for the combinatorial equation). The
human neocortex has only 16 billion neurons (Azevedo et
al., 2009), with only a fraction of these being within LPFC,
such that it would be impossible for each conceptual com-
bination to have a dedicated neuron. Coarse-coded conjunc-
tions and synchrony binding (see above) would allow for the
reuse of neurons across contexts, such that LPFC could
represent more combinations than the number of neurons
within it, since these mechanisms would allow concepts to
be built from sets of reusable subfeatures (O’Reilly etal.,
2003). Similarly, the general processing hierarchy could
allow for compositional reuse of lower-level concepts via
various higher-level representations within the hierarchy.
Importantly, these principles help deal with the combinato-
rial explosion of possible tasks while allowing for efficient
compositional transfer of rules during RITL.

The compositional theory versus the adaptive coding theory

The present compositional theory is compatible with a variety
of existing theories, as we outlined above. However, the
compositional theory appears to be incompatible with the
adaptive coding theory (Duncan, 2001). This theory posits
that neurons within LPFC are adaptive and change their
receptive fields across task contexts; the compositional theory,
on the other hand, requires that receptive fields be relatively
rigid so as to allow for transfer (see Fig. 6). The adaptive
coding theory is based on the observation of LPFC being
active in humans across many task contexts (Duncan &
Owen, 2000) and on the observation of macaque monkey

LPFC neurons representing whatever task rule had been used
during training (Freedman, Riesenhuber, Poggio, & Miller,
2001). Supporting the compositional theory, however, are the
human functionalMRI studies considered above, which found
that constituent-rule representations remain stable within
LPFC despite changes in task context (see Fig. 5).

Also incompatible with the adaptive coding theory, a recent
study with macaque monkeys found that different categories
are represented in separate LPFC neural populations (Roy,
Riesenhuber, Poggio, & Miller, 2010). Importantly, in that
study the exact same stimuli were used for both categories
(e.g., a large cat could be categorized using either cat vs. dog
or large vs. small animal), such that the categories were in
conflict. Another recent study showed that nonconflicting
categories involving distinct stimuli (e.g., for cars, sedan vs.
sports car, and for animals, cat vs. dog) are represented in the
same LPFC neurons (Cromer, Roy, & Miller, 2010). This
appears to support the adaptive coding theory, yet, when
considered along with the results of Roy etal., it is actually
compatible with the compositional theory. Specifically, in
contrast to the adaptive coding theory, these studies suggest
that each LPFC neuron uses a complex static receptive field—
of, for instance, “cat OR sedan”—to represent both of the
categorical distinctions sedan versus sports car and cat versus
dog (rather than shift its receptive field depending on the
context) when the categories are not in conflict. When the
categories are in conflict, however, LPFC uses neurons with
nonoverlapping static receptive fields to reduce interference.

In other words, it appears that receptive fields are not
adaptive so much as complex—such that they appear to be
adaptive in certain contexts. Thus, both data and theory
suggest that representations within LPFC are consistent
across contexts, allowing for compositional transfer of
LPFC representations between related tasks. More specifi-
cally, unlike the adaptive coding theory, the compositional
theory suggests that the receptive-field properties of LPFC
neurons change only slowly, allowing experience-dependent
tuning of representations via connection strength changes to
incrementally improve task-specific performance, which can
then rapidly transfer to new related tasks during RITL.

It may be possible to make the compositional theory
compatible with a variant of the adaptive coding theory—
population adaptive coding. We suggest that individual neu-
rons have relatively static receptive fields (Roy etal., 2010),
allowing for transfer, but that LPFC as a whole is highly
adaptive (compatible with Duncan & Owen, 2000). The
compositional theory suggests that this is possible because
of the great variety of intermixed receptive fields within
LPFC (Jun etal., 2010; Rigotti etal., 2010). Specifically,
the great variety of static coarse-coded representations with-
in LPFC can be conceptualized as a large set of “basis
functions” that can be rapidly selected, such that together
they “fit” the task parameters specified by instructions
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during RITL. The very large number of possible sets of such
basis functions allows for highly adaptive population coding
within LPFC, while allowing for compositional transfer due
to static coding of individual neurons.

It is important to consider that the same compositional
coarse coding described above that results in abstract
representations would also result in the kinds of complex
receptive fields described by Cromer et al. (2010).
Random variations in compositional combinations of rep-
resentations can result in standard abstractions like “red
OR orange” (equivalent to “hot” colors), but they can
also result in more counterintuitive, complex representa-
tions like “cat OR sedan.” The compositional theory
suggests that such combinations of unrelated concepts
provide two functions in LPFC: (1)allowing LPFC to
represent a wider variety of concepts without increasing
the number of neurons and (2)providing a mechanism for
“far transfer,” in which similarities between seemingly
unrelated concepts allow for learning in one context to
transfer to another. To illustrate, consider the possibility
that you recently learned to sell your sedan on a new
online marketplace (like eBay) and you now want to use
the same method to sell your cat. With a set of “cat OR
sedan” neurons tuned to the online marketplace concepts
and procedure, you can readily transfer them to allow for
RITL when selling your cat.

Consider, however, that it is also very important for
LPFC to have neurons with very distinct/orthogonal
receptive fields, in order to reduce interference when
transfer is not possible (e.g., if the online marketplace
has different procedures for selling cars and selling
animals). There are also other forms of conflict during
RITL (i.e., negative transfer) from previous associations.
The compositional theory emphasizes selection of the
correct activity/connectivity pattern in LPFC for novel-
task performance, with suppression of previous associa-
tions occurring through activation of orthogonal repre-
sentations. Identifying the specific mechanisms for
selecting and adaptively increasing activation of orthog-
onal representations will be an important area for future
RITL (and general cognitive control) research. Two
possible mechanisms include (1)conflict detection by
medial prefrontal cortex increasing the activation of
orthogonal representations and/or suppressing nonor-
thogonal representations (Botvinick, Braver, Barch,
Carter, & Cohen, 2001; Cole, Yeung, Freiwald, &
Botvinick, 2009) and (2) the activation of LPFC neurons
during RITL (as part of the complex set of coactive
neurons specifying a given task set) suppressing irrele-
vant previous associations—possibly via LPFC projec-
tions to inhibitory neurons in the thalamus (Barbas &
Zikopoulos, 2007) and/or via gating by basal ganglia
(Stocco, Lebiere, & Anderson, 2010).

Predictions of the compositional theory

The compositional theory makes a variety of predictions
about neural and behavioral factors that should lead to
increased RITL abilities, and to increased cognitive flexibil-
ity generally (e.g., set shifting, divergent thinking/creativity,
and fluid intelligence). Our expectation that increased RITL
abilities will correspond to increases in general cognitive
flexibility comes from the extraordinary speed (one trial)
and adaptability (involving complex novel brain configura-
tions) required for RITL—attributes that are shared yet
typically taxed less by other forms of flexible cognition.
Also supporting this unified view of cognitive flexibility is
recent work demonstrating that fluid intelligence (related to
RITL; Dumontheil et al., 2011; Duncan, Schramm,
Thompson, & Dumontheil, 2012) and creativity—typically
considered to be uncorrelated abilities—are actually highly
correlated once less noisy ‘latent’ measures are used
(Nusbaum & Silvia, 2011; Silvia & Beaty, 2012). The
predictions postulated below can be tested in a variety of
ways, such as by using variability between individuals,
groups, species, or cognitive/brain states. This is not an
exhaustive list of predictions of the theory, but rather a
general outline of possible predictions. We expect that more
explicit computational or mathematical implementations of
the theory will make predictions that are more specific and
critical for the theory in the future.

One important prediction is that greater global connec-
tivity, both within LPFC and between LPFC and the rest of
the brain, should result in greater RITL abilities. Greater
multisystem global connectivity would allow LPFC to better
access a variety of potentially task-relevant systems, allow-
ing it to receive and influence more task-relevant informa-
tion during RITL and other situations requiring flexible
cognitive control (Cole etal., 2012). Similarly, the within-
LPFC global connectivity prediction is based on the result-
ing increase in latent connectivity, which would likely result
in greater representational capacity for novel conceptual
configurations (as was discussed above).

Having more neurons within LPFC (measured, e.g., as
LPFC gray-matter volume) should also increase representa-
tional capacity, resulting in greater RITL abilities. This
would increase latent connectivity substantially (exponen-
tially with increases in the number of neurons), yet it would
increase representational capacity in other ways as well.
Rather than just reflecting the number of possible configu-
rations, as in latent connectivity, having more neurons can
increase the orthogonality of those configurations. The the-
ory predicts that increased orthogonality/distinctness should
reduce between-rule interference and allow for activation of
multiple rules simultaneously during transfer of practiced
rules to novel contexts. It will be important, therefore, to
assess whether having more LPFC neurons corresponds
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with greater representational orthogonality within LPFC,
and whether that in turn corresponds with better RITL
abilities. Importantly, evidence already supports this predic-
tion of the theory. Specifically, the theory is compatible with
the finding (described above) that macaque monkeys can
perform RITL-like behavior (despite having low LPFC rep-
resentational capacity) only once between-task interference
is eliminated (Cromer etal., 2011) (Fig. 2A). The theory
suggests that humans are better at nonlinguistic RITL than
monkeys primarily because of greater representational ca-
pacity, which reduces between-task interference. This not
only reduces catastrophic interference during RITL, but also
improves transfer of shared concepts between tasks to facil-
itate RITL further.

Perhaps the most counterintuitive prediction of the theory
is that a higher “learning rate” (the rate at which connection
weights change between neurons, changing those neurons’
receptive fields) in LPFC should result in slower task learn-
ing, via a reduction in RITL abilities. More precisely, the
theory predicts that a learning rate that is optimal for most
reinforcement-learning (or other forms of incremental learn-
ing) situations should be higher than the optimal learning
rate for RITL. We expect that this prediction can be tested
using computational models manipulating learning rates, or
using single-unit recording or neuroimaging to measure
differences in the rates of receptive-field change across
individuals. This prediction is based on the theoretical claim
that a higher learning rate would result in overfitting of
LPFC connectivity to practiced task contexts, paradoxically
reducing the ability to generalize practiced rules to novel
contexts. Thus, the compositional theory directly argues
against theories of cognitive flexibility that posit fast
weight-based learning in LPFC as a key mechanism (e.g.,
Bugmann, 2011). Note that a higher learning rate might be
effective for situations in which prior learning has no rele-
vance or is incompatible with the to-be-learned task (i.e.,
negative transfer), but we suggest that such situations are
rare once a sufficiently large set of generally relevant ab-
stract rules have been learned.

Another potentially counterintuitive prediction of the
theory is that using a rule in a variety of task contexts should
improve RITL performance with that rule. One might expect
that using a rule in many contexts would increase the num-
ber of associations formed with that rule, increasing
between-rule interference in novel contexts. The theory,
however, predicts that using the rule in many contexts
would reduce overfitting of the rule to any one context,
increasing the ability of the rule to generalize to new con-
texts. The theory’s specific mechanism for this involves
strengthening of rule-consistent connectivity and weakening
of rule-inconsistent connectivity, such that using the rule in
more contexts reduces between-rule connectivity (and thus
interference). This leads to the surprising prediction that a

paradigm involving a rule in many task contexts would
involve only negligible reductions in performance relative
to a paradigm with only a few task contexts for the rule
(which would promote overfitting). A related prediction is
that using a rule with a variety of other rules should reduce
between-rule interference within LPFC during RITL, rather
than increasing it. This may be one reason that RITL per-
formance was so high ( > 90% accuracy) for Cole, Bagic, et
al. (2010), despite the use of each rule with many others.

Implications and future directions for RITL research

Potential applications of the compositional theory
and of RITL research generally

Our society relies heavily on the human capacity for RITL.
For instance, instructed learning is the dominant form of
learning in scholastic education and professional training,
putting those with lower RITL abilities at a disadvantage.
The prominence of RITL in everyday life, along with vari-
ation in RITL abilities across individuals and groups (e.g.,
younger vs. older adults), suggests that future advances in
RITL research will have important practical applications.

We present several predictions of the compositional the-
ory as illustrations of potential future applications of RITL
research. In the domain of education, the compositional
theory predicts that students should be able to increase
RITL abilities by practicing a general strategy of identifying
common constituent concepts across multiple tasks and
trying to apply familiar concepts to new problems whenever
possible. This prediction is not completely new, as others
have emphasized the importance of metaphor, analogy, and
self-explanation for transfer in education (Billing, 2007;
Gentner, Loewenstein, & Thompson, 2003; VanLehn,
Jones, & Chi, 1992; Wormeli, 2009). However, the mecha-
nistic grounding that the compositional theory provides may
lead to elaboration and refinement of strategies promoting
between-task transfer, as well as other approaches to im-
prove RITL.

Similar to students seeking between-task transfer, the com-
positional theory predicts that RITL should be enhanced by
instructors (or cognitive tutors; Ritter, Anderson, Koedinger,
& Corbett, 2007) emphasizing common concepts among
tasks. For instance, instructors could label and repeatedly
point out ‘deep structure’ common to solving several word
problems in a mathematics course. Also, lesson plans should
emphasize constituent concepts available to all or most stu-
dents when teaching new concepts/tasks.

The compositional theory also predicts that there exists
an optimal set of abstract concepts that can be recombined to
allow for RITL of most tasks that anyone is likely to learn in
a lifetime. An important application of future RITL research
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may be to identify these abstract concepts (perhaps through
careful analysis of tasks and rule frequency) and to teach
them to students to facilitate RITL abilities. The composi-
tional theory also predicts that it will be important to prac-
tice using the abstractions repeatedly in many unique
contexts, to strengthen their representational connectivity
within LPFC while avoiding overfitting to a small subset
of contexts. One major example of this is mathematics—a
set of procedural abstractions already identified as important
and taught universally—yet there are likely other sets of
important common concepts (even in mathematics) that are
not being taught at present.

Even with the availability of optimal strategies and lesson
plans, there will always be individual differences in RITL
abilities. This puts some individuals or groups at a disad-
vantage. For instance, older adults have difficulty with RITL
relative to young adults, such as when learning to use new
technology (Hickman, Rogers, & Fisk, 2007). Similarly,
deficits in flexible cognitive control—as indexed by fluid
reasoning abilities—are present in a wide variety of mental
illnesses (Gale, Batty, Tynelius, Deary, & Rasmussen, 2010;
Gottfredson & Saklofske, 2009; Koenen etal., 2009). It will
be important to identify the severity of RITL (and general
flexible cognition) deficits in each of these groups and to
look for ways to alleviate the detrimental effects of these
deficits (e.g., on education and employment).

The compositional theory may facilitate the transition
from identification to treatment of flexible cognition deficits
by suggesting mechanisms of action. For example, the the-
ory predicts that drugs affecting dopamine should affect
rapid updating in LPFC, potentially improving RITL abili-
ties during mental illness. The theory also predicts that
drugs targeting other neurotransmitters within LPFC (e.g.,
acetylcholine; Croxson, Kyriazis, & Baxter, 2011) may en-
hance other LPFC mechanisms supporting RITL, such as
orthogonality of representations to facilitate transfer. It
should be possible to also enhance transfer during mental
illness using cognitive strategies similar to those suggested
for education, such as emphasizing between-task similarities
during RITL. It will be important for detailed computational
implementations of the compositional model to make more
nuanced predictions of ways that RITL deficits can be
alleviated in a variety of mental illnesses.

Future directions for RITL research

The cognitive neuroscience of learning is currently domi-
nated by reinforcement-learning research. However, RITL is
a much more powerful form of learning in many instances
(see Fig. 1), and the basic cognitive and neural mechanisms
underlying this ability are in need of further investigation.
Uncovering the basic mechanisms of RITL will likely also
provide important insights into flexible cognition generally,

as rapidly learning a never-performed task is one of the best
demonstrations of cognitive flexibility possible.

It will be especially important for future RITL research to
investigate the role of RITL in mental illnesses. This need
arises not just from scientific curiosity, but also from the
increasing debilitation of various mental diseases that likely
affect RITL (and thus, the ability to rapidly adapt) as tech-
nological innovation increases the rate of change in the
world. It is currently unclear exactly which mental illnesses
affect RITL abilities. However, the observation that LPFC
lesions decimate RITL abilities (Luria, 1973) and that dis-
eases such as schizophrenia (which involve LPFC disrup-
tion; Barch etal., 2001) limit the ease of cognitive task
learning (Barch, Braver, Carter, Poldrack, & Robbins,
2009; Young & Freyslinger, 1995) suggest that RITL is
affected by a variety of mental illnesses. The link between
general fluid intelligence and RITL (Dumontheil etal., 2011;
Duncan etal., 2012)—and the widespread association of
mental illness with impaired fluid intelligence (Koenen et
al., 2009)—further suggests that RITL deficits are wide-
spread. Research into whether and which mental illnesses
involve RITL deficits could yield important new insights
into the nature of those deficits, especially with regard to
cognitive flexibility. Furthermore, the mechanisms by which
RITL is impaired may differ across mental illnesses, man-
dating different therapeutic strategies to improve RITL for
different mental diseases.

Recent innovations in RITL research promise a bevy of
new insights regarding human learning and intelligence.
Cognitive paradigm designs that permute rule combinations
to investigate novel relative to practiced tasks appear especial-
ly promising for isolating RITL processes from stimulus nov-
elty and general task-switching processes (Cole, Bagic, etal.,
2010; Stocco etal., 2012). It will be important for future
research to investigate how such rule-combination
approaches—which lend themselves to investigating ‘ab-
stract’ task learning—differ from ‘concrete’ stimulus–re-
sponse rule learning (see Fig. 3). It will be especially
important for such research to differentiate RITL-specific
processes from stimulus novelty and general task-switching
processes in these ‘concrete’ rule-learning paradigms, in ad-
dition to exploring the possibility of greater between-task
interference in ‘abstract’ relative to ‘concrete’ paradigms.

RITL research provides unprecedented access to the kind
of cognitive flexibility that makes human cognition unique.
Unlike studies utilizing planning, problem solving, or rein-
forcement learning, RITL paradigms directly reference novel
mental states (rather than forcing pseudorandom exploration),
and so are typically better controlled by the experimenter. This
increased control allows for more precise and efficient exper-
imental paradigms. For instance, Cole, Bagic, etal. (2010)
were able to investigate cognitive flexibility across 64 tasks
while carefully controlling for extraneous factors. We expect
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that this combination of increased experimental control and
rapid access to a virtually infinite variety of possible mental
configurations will lead to new insights into the impressive
human capacity for flexible cognitive control.

RITL is something we encounter every day, yet we
understand surprisingly little about it. Beyond providing
an understanding of this basic ability, we suggest that the
RITL framework provides unprecedented access to an even
more fundamental cognitive ability: flexibly controlling
cognition and behavior according to task demands. We
expect that further development and application of the
RITL framework, and of the compositional theory presented
here, will lead to the emergence of important new insights
into flexible cognitive control.
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