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Recent advances in brain connectivity methods have made it possible to identify hubs—the brain's most
globally connected regions. Such regions are essential for coordinating brain functions due to their
connectivity with numerous regions with a variety of specializations. Current structural and functional
connectivity methods generally agree that default mode network (DMN) regions have among the highest
global brain connectivity (GBC). We developed two novel statistical approaches using resting state functional
connectivity MRI—weighted and unweighted GBC (wGBC and uGBC)—to test the hypothesis that the highest
global connectivity also occurs in the cognitive control network (CCN), a network anti-correlated with the
DMN across a variety of tasks. High global connectivity was found in both CCN and DMN. The newly
developed wGBC approach improves upon existing methods by quantifying inter-subject consistency,
quantifying the highest GBC values by percentage, and avoiding arbitrary connection strength thresholding.
The uGBC approach is based on graph theory and includes many of these improvements, but still requires an
arbitrary connection threshold. We found high GBC in several subcortical regions (e.g., hippocampus, basal
ganglia) only with wGBC despite the regions' extensive anatomical connectivity. These results demonstrate
the complementary utility of wGBC and uGBC analyses for the characterization of the most highly connected,
and thus most functionally important, regions of the brain. Additionally, the high connectivity of both the
CCN and the DMN demonstrates that brain regions outside primary sensory-motor networks are highly
involved in coordinating information throughout the brain.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The brain is thought to have evolved from simple reflex circuits,
bestowing flexibility on behavior by integrating specialized brain
regions into coordinated networks. Perhaps reflecting our especially
flexible behavioral repertoire, the human brain is estimated to have
hundreds of specialized brain regions (Van Essen, 2004). However, it
is unknown how these specialized regions are integrated so behavior
can be coordinated. Recent research has found that some regions have
much higher global brain connectivity (GBC) than others, perhaps
reflecting their role in integrating brain activity in order to coordinate
cognition and behavior (Achard et al., 2006; Buckner et al., 2009;
Hagmann et al., 2008; Heuvel et al., 2008; Salvador et al., 2005a;
Sporns et al., 2007).

Existing GBC methods, using both anatomical (Hagmann et al.,
2008) and functional (Buckner et al., 2009) connectivity, have
identified regions in the default mode network (DMN) as having the
highest GBC. This high connectivity may reflect connections necessary
to implement the wide variety of cognitive functions the network is
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involved in. Consistentwith this notion, we hypothesized that another
large-scale network implementing a variety of cognitive function, the
cognitive control network (CCN), also has among the highest GBC.

The CCN has been reported in many studies of cognitive control
processes, and is likely involved in coordinating networks of brain
regions during novel and non-routine tasks (Cole and Schneider, 2007;
Dosenbach et al., 2006). TheDMNhas been reported in studies of resting
state activity, suggesting it is active “by default” (Raichle et al., 2001).
However, the DMN is engaged bymindwandering (Mason et al., 2007),
prospective and retrospective self-reflection (D'Argembeauet al., 2008),
andmemory retrieval (Buckner et al., 2005), suggesting that the ‘default
mode’ involves ongoing processing of information for relevance to the
self. The CCN is thought to consist of dorsolateral prefrontal cortex
(DLPFC), rostrolateral prefrontal cortex (RLPFC), dorsal–caudal anterior
cingulate cortex (ACC), pre-supplementary motor area (pre-SMA),
inferior frontal junction (IFJ), posterior parietal cortex (PPC), pre-motor
cortex (PMC), and anterior insula cortex (AIC). The DMN is thought to
consist of posterior cingulate cortex (PCC), rostral anterior cingulate
cortex (rACC), anterior temporal lobe (aTL), superior frontal cortex
(SFC), and inferior parietal cortex (IPC). Importantly, the CCN and DMN
are anti-correlated during task performance and uncorrelated at rest
(Fox et al., 2005; Murphy et al., 2008) (Fig. 1A), suggesting they are
relatively independent networks. We predicted, given their
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Fig. 1.Hypothesized globally connected circuits. (A) Previous research showed evidence for two large anti-correlated networks in cortex (Fox et al., 2005). Importantly, the functions of
these networks suggest that theymay have high global brain connectivity (GBC). The cognitive control network (CCN; yellow/red) and default mode network (DMN; blue/green) are
thought to be involved in awide variety of cognitive tasks. The depicted number scales are population z-scores (see Fox et al., 2005). Figure adapted fromFox et al. (2005). (B) Extensive
workwith animalmodels, and somewith humans, has suggested thatmidbrain neurotransmitter systems project widely throughout the brain (Herlenius and Lagercrantz, 2004), and
therefore are likely to have highGBC. Figure adapted fromHerlenius and Lagercrantz (2004) and Squire et al. (2003). (C) Evidence from anatomical studies of basal ganglia (BG) shows
that loops are formed throughout cortex (not just motor cortex (Middleton and Strick, 1994)), suggesting high GBC for the parts of BG looping with high GBC cortical regions.
Anatomical loops have also been found between cerebellum and nearly all of cortex (Middleton and Strick, 1994), via the pons and thalamus, suggesting parts of cerebellum have high
GBC as well. Figure adapted from Kandel et al. (2000).
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involvement in a wide variety of complex cognitive behaviors that they
would both have among the highest GBC in the human brain.

In addition to these two cortical networks, a variety of subcortical
brain regions have been found in animal models to have high global
connectivity. We predicted that these regions would also show high
global connectivity in humans. One such region is amygdala, which is
thought to integrate sensory and internal-state information for limbic
processing (Barbas, 2000; Jolkkonen and Pitkänen, 1998). Similarly,
hippocampal cortex (HC) is thought to integrate information from a
wide variety of sources in order to encode entire episodes (Eichen-
baum et al., 2007). Also, several midbrain neurotransmitter (MNT)
regions such as locus coeruleus and substantia nigra are thought to
project to a variety of regions throughout the brain (Fig. 1B)
(Herlenius and Lagercrantz, 2004) and are thought to play important
roles in motivation and arousal.

Another region, thalamus, includes several nuclei with differing
connectivity profiles (Behrens et al., 2003), suggesting that only parts of
itmighthavehighly extensive connectivity. Similarly, basal ganglia (BG)
and cerebellum connect with cortex via topographic loops (Kelly and
Strick, 2003) (Fig. 1C), suggesting that some loops would bestowmore
wide-spread connectivity on parts of the structures than others. For
these reasons, we predicted that amygdala and HC would have high
global connectivity, aswell as portions of thalamus, BG, and cerebellum.

Functional MRI (fMRI) is an increasingly important method for
measuring functional connectivity non-invasively. Among the func-
tional connectivity methods developed with fMRI, the decade-old
method of resting state functional connectivity MRI (rs-fcMRI) is
unique in its ability to capture functional connectivity largely
independent of any particular brain state. Evidence for this comes
from a study of anesthetized monkeys (Vincent et al., 2007) that
showed rs-fcMRI patterns similar to humans at rest, as well as a study
of rs-fcMRI during both task and rest in humans (Fair et al., 2007).
Though further research is necessary, rs-fcMRI is thought to be based
on very infrequent (∼0.01 to 0.1 Hz) bursts of spiking activity in cortex
that drive correlated activity through brain networks (Golanov et al.,
1994; Kannurpatti et al., 2008).
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In previous work, we observed that, since the entire brain is a
network, the term brain network was ill defined. We developed a
working definition of brain network as a set of regions with greater
internal connectivity than external connectivity (Cole and Schneider,
2007). We were able to show using rs-fcMRI that the CCN fits this
criterion. Importantly, we also found that the CCN is significantly
more globally connected than the rest of the brain on average. Here
we sought to replicate this finding with more refined methods, and
also to determine what other brain regions exhibit high GBC. As
outlined above, we predicted that the CCN, DMN, and a variety of
subcortical regions would be among the most highly globally
connected in the brain, perhaps reflecting their roles in coordinating
complex cognitive behaviors.

Recently, another GBC method was developed that combines
graph theory and rs-fcMRI with a whole-brain (voxel-wise) analysis
approach (Buckner et al., 2009). Unlike the GBCmethod developed by
Cole and Schneider (2007), the Buckner et al. (2009) method uses
binary connections in an unweighted graph. In order to implement
this unweighted GBC (uGBC) method a connection strength threshold
is necessary which, unlike the weighted GBC (wGBC) method,
involves removing connections with lower strength. Since wGBC
Fig. 2. GBC analysis methods. The GBC procedure based on Cole and Schneider (2007) is out
right. GBC analysis involves assigning each graymatter voxel with its GBC, consisting either o
above a certain threshold (uGBC).
does not require thresholding of the connection strengths, we
predicted that it might reveal globally connected regions with many
low-strength connections (such as modulatory subcortical regions;
e.g., locus coeruleus) that might be removed by uGBC thresholding.

In order to compare the uGBC and wGBC methods, we imple-
mented the whole-brain uGBC method (as developed by Buckner et
al., 2009) and modified the wGBC method (as developed by Cole and
Schneider, 2007) to also include whole-brain maps. We also modified
both methods to be more statistically quantitative and accessible to a
wider variety of researchers. Specifically, we applied widely used
parametric statistical methodology to quantify inter-subject consis-
tency, as well as a novel and easily interpretable thresholding
approach that identifies the top percentages of voxels in terms of
global connectivity. Thresholding the maps in terms of top percentage
GBC allows comparison of the methods using a common metric
despite differences between them.

Amajormotivation behind the development of thesemethodswas
to provide alternatives to graph theory for identifying the brain's most
globally connected regions. Though graph theory has been quite
productive in characterizing brain networks thus far (Bullmore and
Sporns, 2009), as a branch of mathematics it typically does not
lined on the left, while the procedure based on Buckner et al. (2009) is outlined on the
f the average correlation with all other gray matter voxels (wGBC) or the count of voxels
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quantify the statistical certainty of a given finding (Deuker et al.,
2009; Kramer et al., 2009). Here we used statistical methods to
quantify between-subject certainty, as well as the degree to which
voxels are globally connected (in terms of percentages). We see these
new approaches as complementary to graph theory, with the
potential to increase confidence in brain network findings by
acknowledging and quantifying the variability and graded nature of
the data underlying those findings.

Materials and methods

Participants

We included 14 right-handed subjects (7 male, 7 female), aged 19
to 29 (mean age 22) in the study. These subjects were recruited from
the University of Pittsburgh and surrounding area. Subjects were
excluded if they had any medical, neurological, or psychiatric illness,
Fig. 3. Top percent wGBC regions. As hypothesized, the entire set of CCN (red) and DMN (b
subcortical regions hypothesized to have high GBC show high wGBC. These regions include am
(possibly locus coeruleus or the raphenucleus), lateral thalamus, and themedial dorsal nucleu
highGBC. Finally, a large swath of cerebellum consistentwith cerebellar–prefrontal circuits sh
is higher than an average correlation of 0 across subjects.
any contraindications for MRI scans, or were left-handed. All subjects
gave informed consent.

MRI data collection

Image acquisition was carried out on a 3T Siemens Trio MRI
scanner. Thirty-eight transaxial slices were acquired every 2000 ms
(FOV: 205 mm, TE: 29 ms, Flip angle: 90°, voxel dimensions:
3.2×3.2×3.2 mm), with a total of 300 echo-planar imaging (EPI)
volumes collected per run. Siemens's implementation of generalized
autocalibrating partially parallel acquisition (GRAPPA) was used to
double the image acquisition speed (Griswold et al., 2002). Three-
dimensional anatomical MP-RAGE images and T2 structural in-plane
images were collected for each subject. One 10-min resting fMRI run
was collected just after collecting anatomical images and before
subjects performed any experimental tasks. A static white screen with
a black central fixation cross was projected onto a screen visible to
lue) regions are among the most globally connected in the brain. Further, unlike uGBC,
ygdala, hippocampal cortex (HC), the pons, a midbrain neurotransmitter (MNT) region

s.Within thebasal ganglia, the caudate andglobuspallidus (extending intoputamen)had
owed highGBC. Themapwas thresholded based on statistical confidence that each voxel
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each subject via a mirror mounted inside the MRI scanner. Subjects
were instructed to keep their eyes open (to avoid known eyes-closed
oscillations in visual cortex (Goldman et al., 2002) and to help the
subjects avoid falling asleep) with instructions to stay relaxed with
eyes still.

Preprocessing

Freesurfer (Dale et al., 1999; Fischl et al., 2002; Fischl et al., 2004)
was used with each subject's MP-RAGE to segment gray matter, white
matter, and ventricle voxels. Following this step, fMRI preprocessing,
analysis, and visualization methods as implemented in AFNI and
SUMA (Cox, 1996) were used. Activation maps were visualized either
on a three-dimensional surface (using SUMA), or via slices with the
activation interpolated to the template brain resolution (cubic spline
interpolation; 1 mm3). See Fig. 2 for an outline of the preprocessing
steps.

Slice timing correction and motion correction procedures were
used. Temporal filtering was applied with 0.009b f(Hz) b0.08 in order
to aid removal of nuisance cardiac and respiratory signals. Time series
were then extracted from white matter and ventricle voxels (with
some distance from the gray matter in order to ensure no overlap),
and linear regression was used to remove any correlations between
the gray matter voxels and these nuisance covariates (as well as their
derivatives and the motion parameters). For the uGBC maps, the
global signal was regressed out in order to replicate Buckner et al.
(2009), who used global signal regression to remove potentially
spurious physiological correlations. For the wGBC maps, the global
signal was not regressed out in order to avoid potentially artifactual
anti-correlations (Murphy et al., 2008), and also because this was a
signal of interest. Note that both types of maps were qualitatively
similar whether or not global signal regression was used. At present,
there is some controversy regarding whether or not to perform global
Table 1
Top 5% wGBC voxel clusters.

Cluster labels Hemisphere Voxels (3.2 mm3) % Gray matter T-statisti

Cerebellum (posterior) Both 904 2.14 7.3819
PCC Both 142 0.34 6.9067
ACC/pre-SMA Right 118 0.28 7.1707
Putamen Left 73 0.17 7.0656
MOG Left 46 0.11 6.9984
Amygdala Left 37 0.09 7.2606
IPL Right 36 0.09 6.8059
Caudate Right 32 0.08 6.822
rACC Left 32 0.08 6.7971
Amygdala Right 27 0.06 6.9174
SFC Left 25 0.06 6.9676
aTL Right 21 0.05 6.7582
Parahippocampus Right 21 0.05 7.0773
RLPFC Right 21 0.05 6.8653
SMA Right 21 0.05 7.136
RLPFC Left 17 0.04 6.6956
MTG Left 17 0.04 7.1264
Orbitofrontal cortex Right 16 0.04 6.811
MOG Right 16 0.04 6.9992
IFJ Right 16 0.04 6.6887
Orbitofrontal cortex Right 15 0.04 7.1105
rACC Left 15 0.04 7.1157
RLPFC Right 15 0.04 6.7635
Cerebellum (tonsil) Right 14 0.03 7.0111
Cerebellum (tonsil) Left 14 0.03 6.8211
Inferior frontal gyrus Right 14 0.03 6.8487
Cerebellum (dentate) Right 12 0.03 7.0254
AIC Right 12 0.03 6.9943
IPL Left 12 0.03 6.9457
PPC (precuneus) Right 11 0.03 6.6612
Cerebellum (culmen) Right 10 0.02 6.7707
Fusiform Left 10 0.02 6.7263

Cluster minimum for inclusion in table=10 voxels. The percentage of gray matter included in
are in clusters with fewer than 10 voxels).
signal regression (Birn et al., 2006; Fox et al., 2009). We included a
GBC method that uses global signal regression (uGBC) and one that
does not (wGBC) in order to verify that any findings common to the
two methods are independent of the methodological choices
regarding global signal regression.

For the wGBC preprocessing, all voxels outside gray matter were
masked out, while this step was not performed for uGBC since non-
gray matter voxels (which have low correlations) are thresholded out
as the uGBC maps are calculated. Further, including the non-gray
matter values in the wGBC map would artificially lower the
correlation averages, reducing the accuracy of the reported grand
mean wGBC value. For similar reasons, spatial smoothing was not
performed during wGBC preprocessing in order to avoid any
contamination of the signals by non-gray matter sources prior to
wGBC analysis. Smoothing (4 mm3 FWHM) was applied for the uGBC
preprocessing in order to replicate the method used by Buckner et al.
(2009). Applying the spatial smoothing before and after uGBC
processing produced qualitatively similar maps.

Weighted global brain connectivity (wGBC) analysis

See the middle left portion of Fig. 2 for an outline of wGBC
analysis. We developed the wGBC analysis method initially using
MATLAB (The MathWorks, Natick, MA), switching to a more
efficient function (AFNI's 3dTcorrMap) for the findings reported
here. wGBC analysis involves seed-based correlation of each gray
matter voxel with all other gray matter voxels. These values are
then averaged together and the resulting value (i.e., that voxel's
wGBC) is assigned to that voxel in a new brain map. Fisher's z
transformation is applied to each (Pearson's r) correlation prior to
averaging, and then converted back to r-values afterward. This
process repeats for all gray matter voxels, resulting in a single brain
map per subject reflecting wGBC.
c Talairach coord: x Talairach coord: y Talairach coord: z Brodmann areas

−4 −62.2 −28.2 –

1.2 −55.3 32.4 31, 7, 23
8.6 24.5 43.1 32, 24, 6, 8

−25.9 −7.6 13.1 –

−34.6 −81.3 20.7 19, 18
−22.4 −6.3 −7.1 –

41 −70.2 32.8 39
10.9 9.1 3.1 –

−6.4 40.3 19.4 32
25.8 1.1 −10.3 –

26.3 26.2 35.2 8, 9
43.7 5.7 −24.3 21, 22, 20
19.1 −33.8 0.3 27
38.2 43.9 7.6 10
6.8 −9.6 59.6 6

−32.3 49 5.9 10
−44.2 −62.3 4.3 37

34.6 31.4 −2.2 47, 11
41.6 −76.8 8.4 19
47.4 13.2 30 9, 6
21.9 27.7 −4.7 11, 47
9.6 51.4 7.5 10, 32

35.5 42.7 21.3 10
6.9 −42.4 −38.5 –

−3.6 −52.8 −37.8 –

53.7 6 19.2 44, 6
20.3 −49.6 −26.3 –

37.3 26.8 3.9 13, 45, 47
−46.4 −58.4 23.1 39

8.3 −51.3 61.3 7
9.3 −29.7 −20.1 –

−43.5 −60.4 −13 37

the table equals 4.24%, due to the cluster minimum threshold (i.e., the remaining 0.76%
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In order to perform a group analysis, each subject's wGBCmapwas
fit to a Talairach (Talairach, 1988) template (AFNI's version of
‘colin27’) using a 12 degrees-of-freedom affine transformation.
Spatial smoothing (6 mm3 FWHM) was then applied to the GBC
map in order to help account for intersubject variability in the location
and size of functional regions. Potential contamination across hemi-
spheres due to spatial smoothing was avoided by applying smoothing
to each hemisphere separately. The grand mean wGBC value for each
subject was determined by averaging all the wGBC values across all
gray matter voxels prior to Talairaching and spatial smoothing
(reflecting the average wGBC across the brain).

The wGBC statistical model

A non-repeated measures ANOVA (with subjects as a random
effect) was used to test hypotheses regarding the wGBC maps across
the group. This group ANOVA compared each voxel's wGBC to zero,
resulting in a statistical map quantifying the probability that there is a
positive linear relationship between each voxel and all other voxels on
average. The assumption made by the ANOVA of an approximately
normal distribution between subjects was verified using normal Q–Q
plots for the grand mean wGBC and the mean wGBC for an example
region (PCC). ANOVA p-values for all statistical maps were calculated
using the false discovery rate (FDR) correction for multiple compar-
isons (Genovese et al., 2002), and region identification was aided
using the Talairach Daemon database (Lancaster et al., 2000) as
implemented in AFNI.

The ‘top percentage’ threshold approach was developed in order
to identify and quantify the voxels with the highest GBC. These
thresholds were determined by raising the ANOVA threshold until
the desired percentage (e.g., 5%) of the total gray matter voxels
Table 2
Top 10% wGBC voxel clusters.

Cluster labels Hemisphere Voxels (3.2 mm3) % Gray ma

Cerebellum Both 1628 3.85
PC/PCC Both 367 0.87
RLPFC, VLPFC, AIC, caudate Right 288 0.68
Putamen, globus pallidus, mid-insula Left 285 0.67
ACC/pre-SMA Right 255 0.60
rACC Both 246 0.58
MTG/MOG Left 136 0.32
Amygdala, putamen, globus pallidus Right 112 0.26
IPL Right 92 0.22
pPFC/IFJ Right 86 0.20
Cuneus Left 68 0.16
aTL Right 64 0.15
RLPFC Left 64 0.15
SFC Right 50 0.12
Lateral geniculate thalamus,
pulvinar, parahippocampus

Right 46 0.11

MTG/MOG Right 46 0.11
Precuneus Right 41 0.10
PCC Right 35 0.08
S1/M1 Left 31 0.07
PPC Right 31 0.07
Medial dorsal thalamus Right 28 0.07
Superior temporal gyrus/posterior insula Right 27 0.06
Lateral MTG Right 26 0.06
SFG Left 23 0.05
Lateral MTG Left 22 0.05
Superior temporal gyrus/posterior insula Left 20 0.05
Fusiform Right 19 0.04
HC (hippocampus, parahippocampus) Left 19 0.04
Lateral geniculate
thalamus, parahippocampus

Left 19 0.04

IPL Left 19 0.04
rPCC Both 19 0.04
PMC Left 17 0.04

Minimum cluster size=15 voxels. The percentage of gray matter included in the table equa
with fewer than 15 voxels).
remained. The total number of gray matter voxels for the group
(mean: 42,314, standard deviation: 1765), which was used to
calculate all percentage thresholds, was determined by averaging
across the total number of gray matter voxels of each subject. The
number of gray matter voxels for each subject was estimated from
their Freesurfer anatomical gray matter mask re-sampled as a
functional volume (3.2 mm3 voxels), Talairach-transformed, and
dilated by one voxel. These binary masks were dilated by one voxel
(i.e., binary ‘smoothed’ by 3.2 mm3) as a conservative estimate of the
effect of Gaussian spatial smoothing (which effectively increases the
number of potentially correlating voxels) on the wGBC and uGBC
results (smoothed by 6 mm3 FWHM and 4 mm3 FWHM, respective-
ly). Since this was a conservative estimate, it is possible that the
reported ‘percentage of gray matter’ values are actually slightly
more selective than reported (e.g., the ‘top 5%’ may actually be the
top 3%).

Note that the ‘top percentage’ threshold approach does not suffer
from the multiple comparisons problem because it does not use
statistical probability (i.e., p-values) for threshold selection. Rather,
the proportion of gray matter voxels above each F-value threshold is
used. Nonetheless, we corrected for multiple comparisons using FDR
when reporting p-values associated with each threshold in order to
remain statistically conservative. Only the reported p-values, not the
statistical maps, were affected by the FDR corrections.

Unweighted global brain connectivity (uGBC) analysis

See the middle right portion of Fig. 2 for an outline of uGBC
analysis. This method was a replication of the method developed by
Buckner et al. (2009), which was based on previously developed
graph theoretical approaches (e.g., Salvador et al., 2005b). uGBC
tter Talairach coord: x Talairach coord: y Talairach coord: z Brodmann areas

−2.8 −63.1 −25.9 –

0.1 −55.9 34.6 31, 7, 23
30.2 29.2 6.8 10, 46, 45, 47, 13

−25 −0.3 2.6 13
7.8 19.8 44.7 32, 24, 6, 8

−2.2 41.9 15.8 32, 24, 9, 10
−38.8 −75.8 20.4 19, 39

28 −3.2 −4.5 –

36.5 −69.1 32.1 39
47.1 11.4 25 9, 6
−1.2 −83.5 23.3 18
43 4 −25.9 21, 22, 20

−33.6 47 7.8 10
26 29.4 34.8 8, 9
18.6 −31.2 0.6 35, 30, 27

37.5 −79.4 12 19, 18, 39
9.9 −55.4 58.7 7

11 −65.5 13.6 31, 30
−48.5 −18.6 34.5 3, 4, 2

40.9 −42.3 44.8 40, 7
7.3 −19.7 12.8 –

49.1 −32.3 16.4 41, 13
57 −29.6 1.1 21, 22

−31.4 32.8 30.1 8, 9
−53.9 −50.9 10.4 22
−36 −29 12.8 41, 13

32.2 −41.9 −16.5 20
−22.8 −22.9 −13 35
−22 −28 0 30, 27

−34.5 −68.7 42.1 7, 19
−2.3 −17.4 48 31, 6

−41.6 3.2 41.3 6

ls 9.99%, due to the cluster minimum threshold (i.e., the remaining 0.01% are in clusters
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analysis involves calculating a seed correlation map of each voxel to
all other voxels, with each voxel's degree of connectivity (i.e., number
of connections) assigned to that voxel in the resulting map. Each seed
correlation map is thresholded at a given value (here, as in Buckner et
al., 2009, rN0.25) in order to remove low correlations that may be
present due to noise. One uGBCmap was created per subject, and that
map was z-normalized in order to account for differences in brain
size. Z-normalization involved subtracting the across-voxel mean
from each voxel and dividing by the across-voxel standard deviation.
The uGBC maps were then fit to a Talairach (Talairach and Tournoux,
1988) template (AFNI's version of ‘colin27’) using a 12 degrees-of-
freedom affine transformation.

The uGBC statistical model

Unlike Buckner et al. (2009), statistical inference was used to
ensure reliability across subjects. Specifically, a non-repeated mea-
sures ANOVA (with subjects as a random effect) was used to test
hypotheses regarding the uGBC maps across the group. This group
ANOVA compared each voxel's uGBC to zero (i.e., the mean number of
connections), resulting in a statistical map quantifying the probability
that each voxel has more connections than the average voxel. The
assumption made by the ANOVA of an approximately normal
distribution between subjects was verified using normal quantile–
quantile (Q–Q) plots for the grandmean uGBC and the mean uGBC for
an example region (PCC). All additional steps were identical to those
of the wGBC method.

GBC distribution analyses

The group distributions were visualized using histograms and
normal Q–Q plots (using R (R Development Core Team, 2008)) of the
GBC values from all gray matter voxels for all subjects. Individual
subject wGBC and uGBC data were z-normalized prior to combining
with the group data. Data were also plotted from two example
subjects in order to illustrate the similarity between the group
distributions and those of the individual subjects.

Results

Grand mean global connectivity strength

The groupmean global connectivity strength across all graymatter
voxels (i.e., the group grand mean wGBC) was r=0.035, with a
standard deviation (between subjects) of 0.0198. All subjects had low,
yet positive grandmeanwGBC, suggesting brain regions are positively
correlated on average.

Top percent wGBC

As expected, all CCN and DMN regions were included in the top 5%
(pb0.00016, FDR corrected) of wGBC voxels. Additionally, several
subcortical regions expected to have among the highest GBC are
present. These subcortical regions include amygdala, HC, medial
dorsal thalamus, an MNT region, cerebellum, globus pallidus, caudate,
and lateral thalamus. These results are detailed in Fig. 3, and Tables 1
and 2.

Top percent uGBC

As expected, themajority of the top uGBC regions were either in the
CCN or DMN. The top 5% of voxels were statistically significant with
b0.0154 (FDR corrected). These results are detailed in Fig. 4, and Tables 3
and 4. All CCN regions were included, while nearly all DMN regions
(with the exception of aTL) were included. Additional regions included
middle temporal gyrus (MTG), middle occipital gyrus (MOG), and
ventro-lateral prefrontal cortex (VLPFC;whichmay be part of the CCN).
Note the absence of any subcortical regions at 5%. The top 10% of uGBC
voxels (Fig. 4; pb0.0328, FDR corrected) are highly consistent with the
results at 5%. Importantly, theDMN regionmissing at 5% (aTL) is present
at 10%, as well as two small regions in cerebellum.

Conjunction of wGBC and uGBC results

A conjunction map was created between the wGBC and uGBC
results at the top 5% and 10% (Fig. 5 and Table 5). For the ‘top 5%’, all
voxels common to wGBC and uGBC in their respective top 5% maps
were included. Similarly, all voxels common to wGBC and uGBC in
their respective top 10% maps were included in the conjoined ‘top
10%’ map.

All CCN and DMN regions were included in the conjoined results,
with the exception of AIC and aTL. These two regions were present in
both thewGBC and uGBCmaps, but the regions' voxels did not overlap
between the wGBC and uGBC maps. Other regions in the conjunction
map include MTG/MOG, VLPFC, right cerebellum, and left M1. The
inclusion of left M1, which was not highlighted in the wGBC and uGBC
maps due to its small size, is consistent with the location of the M1
‘hand’ representation andmay reflect high connectivity for right hand
motor control for the fourteen right-handed subjects.

wGBC and uGBC distributions

Graph theoretical investigations into complex systems typically
look at unweighted degree distributions, rather than weighted degree
distributions. Nonetheless, we were interested in the weighted
distribution, since it might reveal something about the organization
of connectivity in the brain. Fig. 6A illustrates the group wGBC
distribution (top), the comparison to the normal distribution
(middle), and the wGBC distribution for two example subjects
(bottom). These graphs indicate that the weighted global connectivity
of the brain is approximately normally distributed.

The uGBC results lend themselves to more typical graph theory
analysis of the degree (number of connections) distribution. Graph
theoretic results for complex systems (which have both local
clusters and long-range connectivity patterns) typically find degree
distributions that are skewed toward high values, while scale-free
graphs tend to follow a power law (Amaral et al., 2000; Bullmore
and Sporns, 2009). Fig. 6B illustrates the group uGBC distribution
(top), the comparison to the normal distribution (middle), and the
uGBC distribution for two example subjects (bottom). These results
suggest that the brain's global connectivity follows a power law and
is skewed toward high values, in turn suggesting that the brain's
connectivity is both scale-free and complex. Note, however, that the
uGBC threshold of 0.25 (used by Buckner et al., 2009 and also here)
is somewhat arbitrary, and that the degree distribution becomes
near-normal as this threshold approaches 0 (Fig. 7). Further research
is necessary to determine if this reflects the actual degree dis-
tribution of the brain or instead an increase in the number of false
connections due to noise (which would be expected to be normally
distributed).

Overall GBC patterns

We created GBC maps summarizing the level of GBC from the
top 10% to the top 90% in order to determine the overall pattern of
GBC throughout the brain. Fig. 8 illustrates the wGBC pattern, while
Fig. 9 illustrates the uGBC pattern. The two patterns are quite
similar, with primary sensory-motor cortices having among the
lowest and the CCN and DMN having among the highest GBC in
both cases. Notable differences between the maps include stronger
local clustering for the uGBC map and more subcortical regions for
the wGBC map.

http://www.R-project.org


Table 3
Top 5% uGBC voxel clusters.

Cluster labels Hemisphere Voxels (3.2 mm3) % Gray matter T-statistic Talairach coord: x Talairach coord: y Talairach coord: z Brodmann areas

PCC, IPL, PPC, precuneus,
MTG/MOG

Both 1393 3.29 4.3092 6.1 −75.2 18.4 23,31,39,7,18

PMC Left 109 0.26 4.4035 −41.2 0.1 39.4 6
DLPFC Right 56 0.13 4.0605 39.4 26.7 22.6 46, 9
VLPFC, Broca's area Left 48 0.11 3.9498 −52.5 12.2 14.5 44, 45
rACC Left 36 0.09 4.0081 −3.6 43.3 5.2 32
IFJ Right 25 0.06 3.9852 44.9 −0.6 24.6 6, 9
pPFC Right 25 0.06 4.0788 42.2 15.4 39.7 9
PMC Right 24 0.06 3.9138 47.1 −2.1 38.1 6
RLPFC Left 13 0.03 4.3039 −38.7 45.4 6.9 10
SFC Right 12 0.03 3.7321 18.2 37.2 41.2 8
Medial frontal cortex Left 8 0.02 3.5197 −2.8 34.6 40 8
AIC Right 7 0.02 3.7189 36.8 18.6 9.9 13
IPL Right 7 0.02 3.8329 51.4 −46.3 39.1 40
PPC, precuneus Right 7 0.02 3.678 5.3 −66.9 49.3 7

Cluster minimum for inclusion in table=7 voxels. Note that some DMN and CCN regions had fewer than seven voxels remaining, and so are not included here. The percentage of gray
matter included in the table equals 4.18%, due to the cluster minimum threshold (i.e., the remaining 0.82% are in clusters with fewer than seven voxels).

Fig. 4. Top percent uGBC regions. The GBC method developed by Buckner et al. (2009) was modified to quantify inter-subject consistency and to indicate the top percentages of
voxels. Unlike the wGBCmethod, the uGBCmethod uses an unweighted graph, such that the voxel values reflect the concept of degree from graph theory. Like the wGBCmethod, the
uGBC method indicates that both the DMN and CCN regions are among the top 5% of voxels. The map was thresholded based on statistical confidence that each voxel is higher than
the grand mean across all voxels.
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Table 4
Top 10% uGBC voxel clusters.

Cluster labels Hemisphere Voxels (3.2 mm3) % Gray matter T-statistic Talairach coord: x Talairach coord: y Talairach coord: z Brodmann areas

PCC, IPL, PPC, precuneus,
MTG/MOG

Both 2514 5.94 3.7715 6.1 −73.6 20 23,31,39,7,18

RLPFC, DLPFC, PMC, AIC,
rACC, SFC

Both (Nright) 663 1.57 3.3694 25.6 26.5 25.8 10, 9, 46, 6, 13, 32, 8

PMC, DLPFC, IFJ, VLPFC Left 387 0.91 3.6355 −44.6 8 30.4 6, 46, 9, 44, 45
RLPFC Left 36 0.09 3.6065 −38.6 44.6 8.2 10
VLPFC Right 18 0.04 3.1405 53.7 7.7 5.2 44
Superior temporal gyrus Right 14 0.03 3.1937 48.1 −37.9 3.1 22
aTL Left 13 0.03 3.2802 −55 −12.8 −5.1 21, 22
Superior temporal gyrus Right 11 0.03 3.245 52.1 −12 11.3 22
Superior temporal gyrus Left 10 0.02 3.1232 −48 −17.3 10.3 41
Postcentral gyrus Left 9 0.02 3.3967 −49.6 −23.5 19.2 40
Cerebellum (Crus 2) Left 8 0.02 3.1085 −30.5 −69.4 −41.9 –

IPL Right 8 0.02 3.3561 61 −32.6 22.3 40
aTL Right 7 0.02 3.3695 50 −12.2 −8.4 22, 21
RLPFC Left 7 0.02 3.3042 −26.4 56.6 14.2 10

Cluster minimum for inclusion in table=7 voxels. The percentage of gray matter included in the table equals 8.76%, due to the cluster minimum threshold (i.e., the remaining 1.24%
are in clusters with fewer than seven voxels).
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The uGBC map (Fig. 4) also showed fewer subcortical regions than
the wGBC map (Fig. 3) in the top 10%. In order to test the possibility
that this was due to processing differences between the two
approaches, we systematically reduced these differences to see if
more subcortical regions would be present. The differences present in
the wGBCmap were: (1) the inclusion of low values, (2) the inclusion
of negative values, (3) smoothing only after wGBC calculation, and (4)
no global mean regression. Accordingly, we created a map using an
absolute value of rN0.15 threshold (including low positive and
negative values), smoothing only after uGBC calculation (6 mm
FWHM), and no global mean regression.

These four changes produced minimal differences from the main
uGBC map (see Fig. 10). However, uGBC was higher in several
subcortical regions (though not nearly as many as in the wGBC map).
Specifically, amygdala (mostly on the left), dorsal thalamus (mostly
on the left), and cerebellum (same region as in Fig. 4, bilaterally) had
higher values due to the changes. When these changes were applied
separately, both the difference in threshold and the different use of
spatial smoothing affected the uGBC values in subcortical regions
(especially in left amygdala).

Discussion

The wGBC and uGBC methods developed here converge to show
that brain regions in the CCN and DMN are among the most globally
connected (Figs. 3, 4, and 5). Several other subcortical regions,
including amygdala, HC, BG, an MNT region, and cerebellum also
have high wGBC (Fig. 3), as expected based on known anatomical
connectivity. These findings promise to provide novel insights into the
mechanisms of information integration and coordination in the brain.

The first implementation of wGBC analysis was in the context of a
previous study of the CCN (Cole and Schneider, 2007). In that study,
we pointed out that the CCN is involved in a very large variety of
cognitive control tasks and that, given the kinds of complex
coordination necessary to implement cognitive control in these
many contexts, the CCN is likely to have high global brain
connectivity. We showed that the CCN regions are among the most
highly globally connected in the brain, which we replicate here (see
Fig. 3). However, the previous wGBC analysis method was relatively
crude, since it tested only the CCN regions, was based on many short
(60 s) rest periods (as opposed to the continuous 10 min rest periods
used here), and used large (10 mm3) voxels. The wGBC approach
developed here rectifies these issues.

In addition to the CCN, we hypothesized that the DMN would also
have among the highest GBC. The logic here is similar: the DMN is
involved in a wide variety of domain-general cognitive processes,
which likely require connectivity with a large number of other brain
regions. Importantly, the tasks that engage the DMN are typically
different from those that engage the CCN. For instance, the DMN is
more active at rest than during cognitive control tasks (Raichle et al.,
2001), ismodulated by long-termmemory tasks (Buckner et al., 2005),
is parametrically modulated by mind wandering (Mason et al., 2007),
and is associated with self-reflection (D'Argembeau et al., 2008).
We confirmed this hypothesis here, as the DMN (as well as the CCN)
regions are among the most globally connected regions (top 5%) both
relative to the average uGBC (i.e., the mean degree of connectivity;
Fig. 4) and also relative to a wGBC of zero (i.e., no connectivity with
other voxels on average; Fig. 3).

We found that the overall pattern of GBC throughout the brain was
largely consistent across wGBC (see Fig. 8) and uGBC (see Fig. 9)
approaches, and also across several analysis parameters (see Fig. 10).
For instance, primary sensory-motor cortices (auditory, visual,
somatosensory, motor) consistently had among the lowest GBC
values. Further, in accordance with the ‘top 10%’ maps, even the
CCN and DMN voxels below the ‘top 10%’ threshold nonetheless had
among the highest GBC.

In addition to these similarities, there are also notable differences
between the maps. For instance, the wGBC map appears to be less
spatially clustered (in terms of top percentage GBC) than the uGBC
maps. This may reflect the inclusion of more noise by the wGBC
method (since low correlations were not removed). Another
difference is high wGBC relative to uGBC along the medial wall,
which may reflect a small number of very high correlation values
(adding little to uGBC but much to wGBC) in these voxels. In contrast,
there is high uGBC relative to wGBC along the left lateral frontal
cortex, likely reflecting a mixture of positive and negative correlations
(i.e., excitatory and inhibitory connections) that ‘cancel out’ when
averaged during the wGBC calculations. Further research is necessary
to fully verify these possibilities.

The differential sensitivities of the wGBC and uGBC methods
outlined above may also explain why only 14% of the top 10% wGBC
and uGBC voxels overlapped (see Fig. 5). For instance, some of the
top 10% wGBC voxels may have a small number of very high
correlations, making them unlikely to have the large number of
connections necessary for the uGBC top 10%. In contrast, some of the
top 10% uGBC voxels may have a high number of both positive and
negative correlations, making them unlikely to have the consistently
positive average connectivity necessary for the wGBC top 10%.
Regardless of the reason why many of the ‘top ten percent’ voxels do
not overlap, it is nonetheless informative that there is overlap at all,
and that it is largely circumscribed to the hypothesized CCN and
DMN regions.



Fig. 5. Conjunction of top percent wGBC and uGBC. These regions have both high average connectivity strength (wGBC) and high connectivity count (uGBC). Voxels in both thewGBC
and uGBC top percent maps are presented in an axial mosaic (12 slices, skipping every eight 1mm slices), and three sagittal slices. Voxels in both ‘top 5%’maps are included in the top
5% here, while voxels in both ‘top 10%’maps are included in the top 10%. For instance, the depicted cerebellum region is in the top 5% wGBC, but only the top 10% uGBC, making it in
the ‘top 10%’ here. In actuality, the overlap between the ‘top 5%’ maps constitutes 1.4% of gray matter. Thus, while most voxels do not overlap between wGBC and uGBC maps, they
nonetheless overlap in most of the regions included in the maps. The CCN and DMN regions are labeled, with several additional regions labeled for the purpose of discussion.
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The inclusion of subcortical regions known to have extensive
connectivity (such as amygdala and thalamus) suggests wGBCmay be
a more accurate method than uGBC for investigating global connec-
tivity. However, it remains unclear why subcortical regions are
present for wGBC and not uGBC. Buckner et al. (2009) noted thatmore
subcortical voxels (in thalamus) were present in their unweighted
maps as the connection strength threshold was lowered, perhaps
reflecting the possibility that subcortical regions have many weak
connections (relative to the strength of connections in cortex) that are
removed by the conservative connection strength threshold of 0.25. In
contrast, the wGBC method did not remove such weak connections,
suggesting the many weak connections in subcortical regions resulted
in weighted connectivity values that were quite high on average.
Other possibilities for wGBC's success with subcortical regions include



Table 5
Conjunction of top percent wGBC and uGBC voxel clusters.

Cluster labels Hemisphere Volume (3.2 mm3) % Gray matter Talairach coord: x Talairach coord: y Talairach coord: z Brodmann areas

PCC Both 100 0.24 −3.3 −58.6 27.5 31, 7
MOG/cuneus Both 57 0.13 −3 −84.8 23.1 18, 19
IPL Right 52 0.12 42.1 −69.1 32.4 39
IPL Left 49 0.12 −41.7 −76.4 22 39
rACC Both 44 0.10 −4.7 41.6 10.3 32
MOG Left 34 0.08 −30.5 −85.8 14.4 18, 19
MOG Right 21 0.05 42.4 −75.3 8.4 18, 19
MOG Right 20 0.05 40.1 −72.7 −9.1 18, 19
pPFC/IFJ Right 18 0.04 46.6 13.9 29.6 9, 6
PMC Left 17 0.04 −41.1 3.2 41.4 6
MOG Right 16 0.04 30.7 −84.1 16.6 18, 19
DLPFC Right 15 0.04 39.6 29.5 16.2 46, 9
RLPFC Left 13 0.03 −37 45.6 5.6 10
PPC/precuneus Left 11 0.03 −35 −70.1 41.3 7, 19
Lingual gyrus Left 10 0.02 −8.7 −75.3 −9.7 18
MTG Left 10 0.02 −46.4 −60 24.4 39
RLPFC/DLPFC Right 8 0.02 39.3 41.7 7.9 10, 46
MTG Left 7 0.02 −47.3 −67.3 7.7 37
RLPFC/DLPFC Right 7 0.02 38.2 40.5 24.2 10, 9
SFC Right 6 0.01 29.9 30.5 35.6 8, 9
SFC Right 6 0.01 11.2 39.9 43.1 8

Cluster minimum for inclusion in table=6 voxels. The voxels overlapping at the top 10% of wGBC and uGBC maps are included. The percentage of gray matter included in the table
equals 1.23% while the actual overlap between the ‘top 10%’ maps was 1.4% of gray matter (this difference was due to the cluster minimum threshold). Note that while most ‘top
percentage’ voxels do not overlap between the wGBC and uGBC maps, the regions included in the overlap are largely consistent with the set of regions in both the source maps.
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the lack of spatial smoothing during pre-processing (which may have
contaminated subcortical regions with the fMRI signal drop-out in
nearby air pockets for uGBC), the inclusion of negative (in addition to
positive) correlations, and the lack of global mean regression (which
may remove global signals of interest, possibly including signals
common to subcortical regions). We verified that these factors
affected the presence of subcortical regions in the GBC maps (see
Fig. 10), though their effect was small and due mostly to the spatial
smoothing and correlation threshold differences. This nonetheless
demonstrates that subcortical regions are likely present in the wGBC
maps due to their low connectivity (likely modulatory) strengths.

RLPFC was not emphasized in previous GBC studies but was found
here to have among the highest GBC. Human postmortem anatomical
studies have shown that RLPFC has among the largest dendrites (and
associated spines) of any tested brain region (Jacobs et al., 1997;
Jacobs et al., 2001), suggesting that RLPFC has many incoming
anatomical connections. Such highly convergent connectivity sug-
gests RLPFCmay be important for integrating information from across
the brain during complex cognitive tasks (Badre, 2008; Botvinick,
2008; Fuster, 2004; Wendelken et al., 2008). This is consistent with
the finding that this region has both very high uGBC and very high
wGBC (Fig. 5).

The top 5% GBC analyses also revealed several other lateral PFC
regions, including DLPFC and pPFC/IFJ (see bottom of Fig. 5). These
regions are known to have reciprocal connections with a wide variety
of other regions (Bunge et al., 2005; Chafee and Goldman-Rakic, 2000;
Fuster et al., 1985), and may serve as intermediates to the more
anterior RLPFC (Ramnani and Owen, 2004). Importantly, evidence
from non-human primates suggests that these regions are highly
interconnected viamedial dorsal nucleus in the thalamus (Giguere and
Goldman-Rakic, 1988), which was also present in the top 5% wGBC
map (see Fig. 3). These results indicate that a network of regions along
Fig. 6. Distribution of GBC values. (A) The distribution of the average connectivity strength
illustrates that the wGBC values are nearly normally distributed (a perfectly normal distrib
nearly identical to this group distribution, as the two example subjects illustrate (bottom). N
grand mean wGBC value across subjects was slightly positive (0.035). (B) The distribution of
all gray matter voxels across 14 individuals (top). The Q–Q plot illustrates that the uGBC v
separately were nearly identical to this group distribution, as the two example subjects illu
lateral prefrontal cortex and including the portion of thalamus most
interconnected with these regions (medial dorsal nucleus) is highly
interconnected with regions throughout the brain, possibly support-
ing the ability of these regions tomaintain andmanipulate information
from across the brain during complex cognitive control tasks.

The dACC/pSMA is a CCN region with controversy surrounding not
only its function but also its exact anatomical location. A recent review
illustrated the immense anatomical variability of this region, along
with the possibility that the region is area 32′, an anatomically distinct
area unique to humans (Cole et al., 2009). The dACC/pSMA region
identified here is located on the left cingulate gyrus (see Figs. 5 and
10), which is consistent with area 32′ since this area is typically
located on the cingulate gyrus when two cingulate gyri are present,
which occurs on the left hemisphere in most individuals (Paus et al.,
1996; Vogt et al., 1995). Observing high GBC in what is likely area 32′
is important in that it provides more information regarding possible
functions of this evolutionarily recent brain area. Specifically, it
appears that this region may be involved in coordinating information
across a wide variety of brain areas (given its high GBC) during
cognitive control tasks (given its involvement in cognitive control
processes (Cole and Schneider, 2007)).

Several researchers have characterized the aTL as a semantic hub
able to integrate information from multiple modalities to represent
complex objects (Rogers et al., 2006; Rogers et al., 2004; Rogers and
Patterson, 2007). Supporting this view, aTL was present in the wGBC
map at the top 5% (Fig. 3) and the uGBC map at the top 10% (Fig. 4).
However, this region was not present in the wGBC/uGBC conjunction
map (Fig. 5). This may reflect lower GBC for this region than other
CCN/DMN regions, or it may reflect lower signal (which results in
lower correlations) in the region due to fMRI signal drop-out (see
Rogers et al., 2006). Future use of methods that can better image aTL
with minimal signal drop-out (such as positron emission tomography
for all gray matter voxels across 14 individuals (top). The quantile–quantile (Q–Q) plot
ution would fit the line) (middle). The distributions of all individuals separately were
ote that the values were z-normalized in order to aggregate data from all subjects. The
the degree of connectivity (number of connections with strength greater than 0.25) for
alues are clearly not normally distributed (middle). The distributions of all individuals
strate (bottom).
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Fig. 7. uGBC distributions across different connection strength thresholds. Since the 0.25 connection strength threshold (used by Buckner et al., 2009 and also here) is somewhat
arbitrary, we investigated distributions across several thresholds. As the connection strength threshold is increased, the uGBC distribution is seen to better obey a power law. In
contrast, as the connection strength threshold is decreased, the uGBC distribution is seen to becomemore symmetrical, resembling a normal distribution. This pattern may be due to
either greater accuracy at lower thresholds (i.e., the high thresholds are removing important low-strength connections) or greater accuracy at higher thresholds (i.e., the low
thresholds retain connections that are not real and have non-zero correlation values due to noise). Further research is necessary to distinguish between these two possibilities.
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(PET)) may help resolve this issue. It is also possible that different
portions of aTL are differentially sensitive to wGBC versus uGBC (see
Figs. 3 and 4).

For the most part, primary sensory and motor cortices had low
GBC. A clear exception, however, was left M1 (see Fig. 5). This region's
location is consistent with the motor representation of the right hand,
Fig. 8. Overall wGBC by top percentages of voxels. Voxels were colored according to their in
reflects the wGBC strength and consistency of each voxel relative to 0 wGBC. Note that the
suggesting that the region may have high GBC due to the right-
handedness of all 14 subjects. Future research, possibly involving GBC
analysis of both right- and left-handed individuals, is necessary to
fully verify if handedness is the product of differentially high GBC (i.e.,
high global connectivity for the dominant hand relative to the non-
dominant hand).
clusion in the top percentages of voxels. The map is based on group F-statistics and so
‘top 90%’ also includes the remaining 10% in order to include all voxels.



Fig. 9. Overall uGBC by top percentages of voxels. Like Fig. 8, voxels were colored according to their inclusion in the top percentages of voxels. The map is based on group F-statistics
and so reflects the uGBC count and consistency of each voxel relative to the mean uGBC value. The values above the 50% threshold reflect statistical significance above the mean,
while values below the 50% threshold reflect statistical significance below the mean.
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A recent study using rs-fcMRI reported that portions of cerebellum
connect to distinct portions of frontal cortex in humans (Krienen and
Buckner, 2009). Specifically, they found that portions of cerebellum
that were connected to motor cortex were distinct from portions
connected to prefrontal cortex. The wGBCmap includes a large part of
cerebellum as among the most highly connected regions in the brain
(top 5%). The uGBCmap includes two small regions in cerebellum (top
10%). These wGBC and uGBC cerebellar regions are largely consistent
with the portions of cerebellum Krienen and Buckner (2009) found to
be connected to DLPFC, medial prefrontal cortex, and (to a lesser
extent) RLPFC. Notably, very little of the portion connecting to motor
cortex was present in the GBC maps. These findings support the
conclusion that portions of cerebellum with high GBC have that GBC
due to connectivity with cortical regions with high GBC, such as the
prefrontal regions within the CCN and DMN.

In addition to subcortical, CCN, and DMN regions, several visual
regions were also among the most globally connected. This may
reflect the privileged placement of visual processing in the human
brain (Ungerleider and Haxby, 1994). Future research is necessary to
determine if this high GBC is due to the relatively large size of visual
cortex (thus comprising a disproportionately large number of voxels)
or if it is due to high connectivity with regions outside visual cortex as
well.

Graph theory has been utilized to great effect in recent studies of
brain connectivity. Overlapping with the graph theory concepts of
hubs and node centrality, the present study uses uGBC and wGBC to
determine the most highly connected brain regions. A recent study
used graph theory in the context of diffusion weighted MRI (DWI) to
investigate global anatomical connectivity (Hagmann et al., 2008).
That study's findings largely agree with the present study's findings,
showing that RLPFC, PCC, rACC, and IPL have high global connectivity.
However, that study showed that PCC (including a portion of the
precuneus) had the highest global connectivity of any region. We also
found especially high connectivity in this region, suggesting that the
functional connectivity approach used here reflects underlying
anatomical connectivity to some extent. Note, however, that func-
tional connectivity may be more relevant to understanding how
regional connections influence brain dynamics and ultimately
behavior, since it can include strong indirect connections (which are
likely highly relevant to brain dynamics) as well as direct connections.

The lack of an arbitrary threshold during wGBC map creation is a
potential advantage of wGBC relative to uGBC. Indeed, while Buckner
et al. (2009) demonstrated similar spatial maps at a variety of
strength thresholds for uGBC, we also found that the uGBC
distribution changes dramatically with different strength thresholds
(Fig. 7). This throws some doubt on the appropriateness of any
particular uGBC strength threshold. Further research is necessary to
determine if the tendency toward symmetry at lower strength
thresholds reflects the actual degree distribution of the brain or
instead an increase in the number of false connections due to noise.
One possible solution may be to threshold connections in a principled
manner using a recently-developed method for quantifying the
statistical certainty of connectivity (Kramer et al., 2009). Note that
the uGBC maps are likely informative regarding the regions with the
highest GBC even if a given threshold is not appropriate for
characterizing the degree distribution of the brain.



Fig. 10. Overall uGBC with fewer processing differences from wGBC. Like Fig. 9, voxels were colored according to their inclusion in the top percentages of voxels. The following
changes were made when creating this map in order to better approximate the methods used for the wGBC map: (1) low values were included (rN0.15), (2) negative values were
included (also, rb -0.15), (3) spatial smoothing was applied only after uGBC calculation, and (4) global mean regression was not used.
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Since there is no a priori reason to assume that the brain's
connectivity is normally distributed, it is possible that the actual
distribution of uGBC values is a non-normal power law distribution as
found at higher thresholds (see Fig. 7). Indeed, previous estimates of
the degree distribution of the brain (the graph theory equivalent of
the uGBC distribution) have also been power law distributions,
implying the human brain is ‘scale free’ and forms a small world
network (Bullmore and Sporns, 2009; Heuvel et al., 2008). However,
our results illustrate that this may be a premature conclusion, as the
threshold used prior to estimating the degree distribution has a
substantial effect on its shape. This same problem extends to
estimates using anatomical connectivity as measured by DWI since
many smaller fiber connections (e.g., in gray matter) that may
constitute the lower end of a normal distribution are lost in noise with
current DWI methods (Gigandet et al., 2008). Further research is
necessary to reduce noise in these global connectivity approaches in
order to see the true degree distribution of the human brain.

Several forms of noise common to fMRI experiments may have
affected the results presented here. For instance, fMRI signal drop-out
is known to occur near the sinuses and other air pockets, and may
have reduced correlations in surrounding gray matter. Indeed, there
was a tendency in the results reported here for low GBC in
orbitofrontal cortex and inferior temporal lobes, among other regions
near air pockets (see Figs. 8 and 9). Further research is necessary to
determine the effects of signal drop-out on estimates of GBC. Another
potential source of noise was the presence of cardiac and respiratory
correlations. We tested the effect of such artifactual correlations using
global mean regression, and found that they had little effect on the
group results. However, several individual subjects showed high
wGBC and uGBC values in parts of the brain that typically correlate
with respiratory and cardiac artifacts due to nearby blood vessels
(Birn et al., 2006). Further research (possibly involving regression of
nuisance cardiac and respiratory signals) is necessary to determine
the effect of physiological artifacts on GBC estimates.

It is perhaps surprising that the CCN and DMN were both among
the top 5% of globally connected voxels given that their activities are
not typically correlated with each other (Fox et al., 2005; Murphy et
al., 2008). However, they do share one thing in common: their
activities are not correlated with the external world either. Evidence
for this comes from a study of brain activity during movie watching
(Hasson et al., 2004), which found that almost the entire brain
correlated between subjects when watching the same movie, except
for many of the CCN and DMN regions. This result, in conjunction with
the present study's results, suggests that the CCN and DMN are able to
utilize their extensive connectivity to integrate information from
primary sensory regions and also between their own regions
internally to form an internal ‘mental’ world that may characterize
the core of human experience. Future research may reveal the exact
connectivity patterns and neural processes that make the emergent
properties of this internal ‘mental’ world (e.g., selfhood, conscious-
ness) possible. Additionally, further research may reveal the similar-
ities and differences between the CCN and DMN connectivity patterns,
perhaps revealing the mechanism of their differentiation despite both
having high global connectivity.
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It is also potentially surprising that the CCN and DMN are within
the top 5% of both the uGBC and wGBC statistics despite the different
distributions underlying these two approaches (see Fig. 5). The wGBC
values are normally distributed for both the group and individual
subjects (Fig. 6A), while the uGBC values resemble a power law
distribution (Fig. 6B). However, both distributions have a high-value
tail that gradually decreases. The similarity of the top GBC values
using the two approaches indicates that these high-value tails include
many of the same voxels, solidifying the conclusion that the regions
including these voxels are among the most globally connected
portions of the brain.

In summary, we developed two new methods, uGBC and wGBC
analysis, which showed that the brain's most globally interactive
regions can be placed within the context of known large-scale
networks. These networks include the CCN and DMN, whose regions
are highly internally correlated during both rest and performance of a
wide variety of tasks (Cole and Schneider, 2007; Fox et al., 2005; Toro
et al., 2008). Other networks with high wGBC include amygdala, HC,
BG loops with cortex, and cerebellar loops with cortex, among others.
The high global connectivity found for these networks implies
importance in complex cognitive functions that require extensive
interactive processing across the brain, which is largely consistent
with the putative functions of these networks. A key challenge for
further research is to characterize exactly how these particularly
important networks' connectivity patterns contribute to cognition
and behavior.
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