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The ability to rapidly reconfigure our minds to perform novel tasks is important for adapting to an ever-changing world, yet little is
understood about its basis in the brain. Furthermore, it is unclear how this kind of task preparation changes with practice. Previous
research suggests that prefrontal cortex (PFC) is essential when preparing to perform either novel or practiced tasks. Building upon
recent evidence that PFC is organized in an anterior-to-posterior hierarchy, we postulated that novel and practiced task preparation
would differentiate hierarchically distinct regions within PFC across time. Specifically, we hypothesized and confirmed using functional
magnetic resonance imaging and magnetoencephalography with humans that novel task preparation is a bottom-up process that in-
volves lower-level rule representations in dorsolateral PFC (DLPFC) before a higher-level rule-integrating task representation in anterior
PFC (aPFC). In contrast, we identified a complete reversal of this activity pattern during practiced task preparation. Specifically, we found
that practiced task preparation is a top-down process that involves a higher-level rule-integrating task representation (recalled from
long-term memory) in aPFC before lower-level rule representations in DLPFC. These findings reveal two distinct yet highly inter-related
mechanisms for task preparation, one involving task set formation from instructions during rapid instructed task learning and the other
involving task set retrieval from long-term memory to facilitate familiar task performance. These two mechanisms demonstrate the
exceptional flexibility of human PFC as it rapidly reconfigures cognitive brain networks to implement a wide variety of possible tasks.

Introduction
Humans are uniquely capable of rapidly learning a nearly infinite
variety of possible new tasks from instruction (Braver and Barch,
2006; Monsell, 1996). This form of learning allows for rapid ad-
aptation to novel situations and transfer of previously learned
skills, vastly increasing the cognitive flexibility of our species.
Despite the prominent contribution of rapid instructed task
learning (RITL) to human cognition, little is known about how it
is implemented in the brain. This is in contrast to practiced task
preparation, which has been investigated extensively.

One thing that is clear about RITL is that it relies upon prefrontal
cortex (PFC) (Burgess, 1997; Dumontheil et al., 2010; Ruge and
Wolfensteller, 2010). Luria (1973) found that some PFC lesions pro-
duced a striking inability to convert novel instructions into task per-

formance, despite intact working memory (WM) and linguistic
abilities. This suggests that there is a specific preparatory process
within PFC that is necessary for RITL. We sought to identify this
process here by using functional magnetic resonance imaging
(fMRI) and magnetoencephalography (MEG).

Studies of task switching also strongly support a role for PFC
in practiced task preparation (Sakai, 2008). Recently, evidence
has emerged for a specific preparatory mechanism in which ac-
tivity in anterior PFC (aPFC) drives activity in dorsolateral PFC
(DLPFC) and other posterior regions to specify task sets (Sakai
and Passingham, 2003, 2006). This preparatory mechanism may
reflect an anterior-to-posterior hierarchical relationship within
PFC (Badre, 2008) in which more anterior regions implement
“higher-level” processing than posterior regions.

Based on this hierarchical relationship, we hypothesized that
aPFC-to-DLPFC information flow during practiced task prepara-
tion would reverse (becoming DLPFC-to-aPFC) during novel task
preparation. This reversal would reflect the difference between top-
down preparation for practiced tasks [involving specification of an
rule-integrated task set from cued memory (Mayr and Kliegl, 2000)]
and bottom-up preparation during RITL (involving specification of
task sets from individual instruction rules).

We specifically predicted that the reversal within PFC would
be reflected in time, with aPFC becoming active earlier than
DLPFC during practiced task preparation and DLPFC becoming
active earlier than aPFC during novel task preparation (Fig. 1).
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Such a result would be compatible with
DLPFC rule representations (Miller et al.,
2002) becoming integrated to form a
higher-level task representation in aPFC
(De Pisapia et al., 2007) during RITL,
which would be reactivated from memory
during practiced task preparation.

We developed a new cognitive para-
digm to test these predictions (Fig. 2).
Most studies of task preparation include
practiced rather than novel tasks, likely
because of difficulty assessing statistical
reliability when even a single repetition
invalidates the task’s novelty. The para-
digm used here employs 64 unique tasks
to observe statistically reliable effects dur-
ing novel task preparation. Importantly,
four of the tasks are practiced, providing
controls for stimulus novelty and task
switching [both known to involve PFC
(Daffner et al., 2000; Dove et al., 2000)]. In
addition to testing our hypotheses regard-
ing PFC, this new paradigm allowed us to
verify whether humans are truly capable
of rapidly learning a wide variety of com-
plex novel tasks without prior practice.

Materials and Methods
Participants. We included 15 right-handed par-
ticipants (eight male, seven female), aged
19 –29 (mean age 22), in the fMRI experiment.
We included eight right-handed participants
(three male, five female), aged 18 –30 (mean
age 23), in the MEG experiment. These partic-
ipants were recruited from the University of
Pittsburgh (Pittsburgh, PA) and the surround-
ing area. Participants were excluded if they had
any medical, neurological, or psychiatric ill-
ness, any contraindications for MEG or MRI
scans, were nonnative English speakers, or
were left handed. All participants gave in-
formed consent.

Task paradigm. The fMRI and MEG experi-
ments consisted of performing the permuted
rule operations (PRO) cognitive paradigm,
which was developed as part of this study. The
PRO paradigm combines a set of simple rule
components in many different ways, creating
dozens of complex task sets certain to be novel
to participants (Fig. 2). The paradigm was pre-
sented using E-Prime software (Schneider et
al., 2002).

Four sensory-semantic, four logic, and four
motor response rules were used in the para-
digm. Each semantic judgment task consisted
of one rule from each of these categories, allow-
ing the creation of 4 � 4 � 4 � 64 distinct tasks
by permuting the possible rules. Of these tasks,
four (counterbalanced across participants)
were practiced (30 blocks, 90 trials each) dur-
ing a 2 h behavioral session 1–7 d before the neuroimaging session. These
“practiced” tasks were chosen for each subject such that each rule was
included in exactly one of the four tasks, ensuring that all rules were
equally practiced. During the neuroimaging session, half of the blocks
consisted of the practiced tasks and half of novel tasks. Novel and prac-
ticed blocks were randomly interleaved for the fMRI experiment, with

the constraint that exactly six blocks of each type occur within every run.
With 10 runs total per participant, each novel task was presented in one
block and each practiced task was presented in 15 blocks.

The semantic rules consisted of sensory semantic decisions (e.g., “is it
sweet?”). The logic rules specified how to respond based on the semantic
decision outcome(s) for each trial (Fig. 2, large box). The motor response
rules specified which button to press based on the logic decision out-

A B

Figure 1. Task preparation hypotheses predict reversal of information flow in PFC. A, Previous observations of practiced task
preparation (Mayr and Kliegl, 2000; Sakai and Passingham, 2006) suggest that aPFC may initially load a goal/”higher-level task
set” representation from LTM that subsequently drives activation of the individual rules in DLPFC. We sought to verify these
predictions here. This pattern of results would be compatible with the cognitive processes demonstrated by Rubinstein et al. (2001)
in which practiced task preparation involves higher-level goal shifting (during task encoding) followed by lower-level rule activa-
tion (during the first trial). B, Based on their hierarchical relationship, we predicted that aPFC and DLPFC would reverse their
processing order and direction of influence during RITL. This would reflect the shift from primarily top-down processing for
practiced task preparation to bottom-up processing for novel task preparation. During novel task preparation we expected indi-
vidual task rules to be activated in DLPFC before being integrated into a goal/”higher-level task set” representation within aPFC for
coordination of subsequent task performance. We refer to this process of activating and coordinating a novel set of task rules as
“task set formation.”

Figure 2. A novel cognitive paradigm for investigating rapid instructed task learning. The permuted rule operations
paradigm involves permuting 12 task rules to create 64 unique tasks. Four of these tasks (counterbalanced across partici-
pants) were practiced in a prior behavioral session, while the remaining 60 were completely novel. Importantly, the
individual rules were equally practiced while the task sets were not. Each task consisted of a logic rule, a sensory semantic
rule, and a response rule, with four possible rules of each type. A block consisted of four encoding screens followed by three
trials. The novel and practiced conditions were designed to be directly compared to each other, as they both control for
stimulus novelty and task switching effects (both known to involve PFC) in addition to other general preparatory processes.
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come. The task instructions made explicit reference to the motor re-
sponse for a “true” outcome, while participants knew (from the practice
session) to use the other finger on the same hand for a “false” outcome.

Figure 2 illustrates an example task block, which includes encoding
and three trials. Each block began with a task type cue, indicating whether
the upcoming task is novel (thin border) or practiced (thick border),
followed by three instruction screens. This cue was included to aid par-
ticipants implementing different strategies across the different task types.
The order of the instructions following the task type cue was consistent
for each participant, but counterbalanced across participants. Asterisks
filled in extra spaces in each instruction screen to control for differences
in visual stimulation across task rules. Each stimulus was presented for
800 ms with a 200 ms interstimulus interval. Inter-event intervals were
randomly varied between 2 and 6 s (in 2 s intervals) for the fMRI exper-
iment and 2 and 3 s (in 500 ms intervals) for the MEG experiment.

Stimuli were normalized by a separate group of participants (21
male, 33 female). Word stimuli were included in the neuroimaging
experiments with exactly two category questions: one in which the
normalizing group members answered “yes” �75% of the time and
one in which they answered “no” �75% of the time. Exactly 45 stim-
uli were included per semantic category. Each stimulus was presented
exactly 8 times (50% in a “yes” context, 50% in a “no” context) in the
neuroimaging experiments, across both the behavioral practice
(50%) and scanning (50%) sessions.

The cognitive paradigm used in the MEG experiment was virtually
identical to the paradigm used in the fMRI experiment. There were,
however, several differences: the intertrial delays were shortened (2–3 s
jittered) to take advantage of the high temporal resolution of MEG; the
amount of practice before scanning was doubled (same amount of prac-
tice time with half as many short intertrial delays and therefore twice as
many trials); blocks were presented in “novel” and practiced epochs to
encourage distinct strategies between the conditions; and no task repeti-
tions were allowed.

MRI data collection. Image acquisition was performed on a 3T Siemens
Trio MRI scanner. Thirty-eight transaxial slices were acquired every 2000
ms (field of view, 210 mm; echo time, 30 ms; flip angle: 90°; voxel dimen-
sions, 3.2 mm 3) with a total of 216 echo-planar imaging volumes col-
lected per run. Siemens’ implementation of generalized autocalibrating
partially parallel acquisition was used to double the image acquisition
speed (Griswold et al., 2002). Three-dimensional anatomical MP-RAGE
(magnetization prepared rapid acquisition gradient echo) images and T2
structural in-plane images were collected for each subject before fMRI
data collection.

MEG data collection. Data acquisition was performed with a Vector-
view (Elekta Neuromag) 306-sensor MEG system. To monitor eye move-
ments and eye blinks, two bipolar electrode pairs were used for vertical
and horizontal electrooculogram recordings. Two electrocardiogram
electrodes were placed on each participant’s chest to record heart activity.
Four head position indicator (HPI) coils were attached onto each partic-
ipant’s scalp. Next, the three-dimensional locations of three cardinal
landmarks (nasion and left and right periauriculars), HPI coils, and ad-
ditional (20�) points on the scalp were digitized using a Fastrak system
(Polhemus) to allow subsequent coregistration of the MEG data with
each participant’s structural MRI.

The HPI coils were used to determine the position of each participant’s
head relative to the MEG sensor array before every scanning run (10 runs,
5 min each). The MEG data were acquired and saved continuously at a
sampling rate of 1000 Hz with a recording lowpass filter of 330 Hz.

Behavioral analysis. All behavioral analyses were carried out in R (R
Foundation for Statistical Computing, Vienna, Austria). Accuracy
statistical tests were modeled in mixed-effect non-repeated-measures
ANOVAs (subject as a random effect), while reaction time statistical
tests were modeled in mixed-effect repeated-measures ANOVAs (subject
as a random effect). All nonswitch blocks (1.2% of the blocks during
fMRI) were removed before statistical analysis (for behavioral and neu-
roimaging analyses).

fMRI analysis. Preprocessing and analysis were performed using AFNI
(Cox, 1996). Preprocessing consisted of standard slice timing correction,
motion correction, and spatial smoothing (6 mm full width at half max-

imum). Freesurfer (Desikan et al., 2006) anatomical segmentations of the
participants’ skull-stripped brain volumes were used as masks to remove
nonbrain voxels.

The preprocessed data were analyzed with a rapid event-related gen-
eral linear model with no assumption of hemodynamic response shape.
An 11 repetition time (22 s) finite impulse response window was mod-
eled for each event type to ensure that the modeled time series returned to
baseline. The two encoding (novel and practiced) and six trial (three
novel, three practiced) event types were modeled separately, with rest
periods acting as baseline. Incorrect trials were removed from analyses by
modeling them with separate regressors (reducing contamination of cor-
rect trial responses).

The resulting statistical maps were transformed into Talairach space
(Talairach and Tournoux, 1988) and analyzed using group ANOVAs.
The first ANOVA estimated mean across-subject fMRI responses to
novel and practiced encoding events. Condition (novel and practiced),
time (11 time points), and subject (as a random effect) factors were
estimated, and the condition � time interaction was analyzed for each
voxel. The resulting map illustrates the statistical reliability of response
shape differences between conditions.

The second group ANOVA estimated fMRI responses to trial events.
The ANOVA included condition (novel or practiced), trial number (1, 2,
or 3), and subject (as a random effect) factors. The effect of condition for
the first trial and the main effect of condition (across the three trials) are
reported.

fMRI multiple-comparisons correction. Multiple comparisons were cor-
rected for the statistical maps using familywise error (FWE) cluster size
thresholding (Forman et al., 1995), or false discovery rate (FDR)
(Genovese et al., 2002). FWE cluster thresholds were estimated using
Monte Carlo simulations (AFNI AlphaSim). The whole-brain FWE sim-
ulation was restricted to an anatomical mask of all gray matter (including
both cortical and subcortical structures) and used a cluster-defining
threshold of p � 0.05, resulting in a 0.05 FWE-corrected cluster threshold
of 89 voxels.

Since we specifically hypothesized effects in PFC, we determined an
FWE cluster threshold using an anatomical mask restricted to lateral
PFC. This FWE simulation used a cluster-defining threshold of p � 0.05,
resulting in a 0.05 FWE-corrected cluster threshold of 28 voxels.

FDR was used to correct multiple comparisons for the encoding period
statistical map (for regions besides aPFC and DLPFC) to identify smaller
regions that may have been missed with the FWE approach (no voxels sur-
vived the FDR threshold for the trial period statistical map). This exploratory
contrast should be interpreted with caution given evidence that while FDR
corrects for voxelwise false positives, it may not properly correct for cluster-
wise false positives (Chumbley and Friston, 2009).

fMRI region of interest analyses. The whole-brain statistical maps
were used to define regions of interest (ROIs) for subsequent analyses.
We eliminated “circular” selection biases (Kriegeskorte et al., 2009)
when analyzing encoding-period data by using ROIs identified with
trial period data and vice versa. See supplemental Results, available at
www.jneurosci.org as supplemental material, for evidence supporting
independent estimation of encoding and trial events. The MEG di-
rected connectivity results used the fMRI ROIs, eliminating circular-
ity in that analysis as well.

MEG dSPM data analysis. MEG was used to test the hypothesis that
information flow reverses between novel and practiced task preparation.
As a first step, we localized MEG activity to the cortical surface to test for
a replication of the fMRI results using MEG.

The MEG data were preprocessed using signal space separation and
MaxMove (to spatially align head position between runs) as imple-
mented by MaxFilter software (Taulu et al., 2004, 2005). Using MATLAB
2007a (The MathWorks), electrooculogram and electroencephalogram
signals were regressed out of the MEG signals to reduce eye blink (and
cardiac) artifacts (Wallstrom et al., 2004) with a 60 s moving window.
Any trials with MEG artifacts exceeding 200 picoteslas were removed
from further analysis.

The data were further analyzed using minimum norm estimate
(MNE) software (Hämäläinen and Ilmoniemi, 1994). Noise and baseline
values were estimated using data during the interblock delays. Depth
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weighting was used to help counter the localization bias toward the su-
perficial surface (Lin et al., 2006b), and current orientation was loosely
constrained to surface normal (default constraint value of 0.4) (Lin et al.,
2006a). Dynamic statistical parametric mapping (dSPM) was used to
localize statistically significant brain regions (Dale et al., 2000).

For group analysis, each subject’s dSPM data were projected onto the
cortical surface and morphed (Fischl et al., 1999) to a common Talairach
(Talairach and Tournoux, 1988) template surface. All subjects’ data were
averaged on this common template surface. These group averaged dSPM
values were subtracted between conditions and projected back to the
surface for condition contrast analyses.

MEG directed connectivity analyses. Given that the fMRI results were
replicated using MEG, we used directed connectivity to test the hypoth-
esis that information flow reverses between aPFC and DLPFC across
novel and practiced task preparation. We used two directed connectivity
methods to test this hypothesis: Granger causality (GC) and the phase
slope index (PSI).

GC analyses were implemented using the Causal Connectivity Tool-
box (Seth, 2005, 2010), while the PSI analyses were implemented using
MATLAB functions developed by Nolte et al. (2008). Before running the
connectivity analyses, the aPFC and DLPFC ROIs from the fMRI exper-
iment were morphed to each participant’s brain surface, and MNE time
series were extracted based on MNE software’s inverse estimates (fully
constrained to surface normal). We then preprocessed the MNE data by
removing outlier time series (those with fluctuations �6 SDs from the
median) and removing the linear trend and the temporal mean from
each time series.

Each block of each condition was modeled separately to account for
interblock and intersubject differences in timing. A large GC model order
was used (100 ms) to account for a range of possible dynamics, as well as
to avoid fitting the bandpass filter cutoffs (Seth, 2010). GC was estimated
after application of a bandpass filter in the gamma band (40 –150 Hz) and
conversion to gamma band power (root mean square of nonoverlapping
50 ms time bins) because of evidence of long-distance neural interactions
in this frequency range (Fries et al., 2007; Gregoriou et al., 2009), as well
as correspondence of MEG gamma power with fMRI data (Niessing et al.,
2005; Zumer et al., 2010). GC magnitudes were estimated as the log F
ratio (Geweke, 1982).

PSI estimation was used in addition to the GC analysis based on evi-
dence that PSI better accounts for volume conduction artifacts and high
levels of noise (Nolte et al., 2008). Unlike GC, PSI uses the “imaginary”
component of coherence, which reflects nonzero lag connectivity such
that it is less sensitive to mixtures of independent sources (Nolte et al.,
2004, 2008). The dominant direction of influence between two signals is
estimated from the direction of increasing phase differences with increas-
ingly high frequencies (i.e., an increase in the phase slope). Non-
normalized PSI estimates were obtained from each block separately
(segment size was 500 ms).

GC and PSI estimates were obtained separately for each of the three
encoding cues (1000 ms each, excluding the “task type” cue) and first
trials (2000 ms each). t tests were used to test for dominant influences and
differences in influences between conditions. All GC and PSI t tests were
two tailed and paired by block. Quantile– quantile plots were used to
verify that the GC/PSI values were approximately normally distributed
before running the statistical tests.

Simulations verified the statistical specificity and sensitivity of the GC
and PSI analyses. The simulations consisted of 1000 t tests for dominant
directions of influence, with each t test based on GC and PSI estimates of
400 independently simulated trials (the MEG data included 413 blocks
after rejection of outlier blocks). Simulated trials consisted of 1000 time
points each, randomly sampled from a normal distribution, that were
copied to a second time series with lag introduced to simulate directed
connectivity. The lag was randomly selected for each trial from a range of
10 –100 ms. Model parameters were identical to those used in the MEG
analyses. The first simulation included equal bidirectional connectivity,
with double the noise in one simulated channel (50 vs 25% Gaussian
noise) to ensure that differential signal-to-noise ratio does not inflate GC
estimates (with the particular approach used here), as has been suggested
previously (Andersson, 2005; Schoffelen and Gross, 2009). The results

indicated a reasonably small rate of false positives (4.0% for gamma
power GC, and 3.9% for PSI, with alpha at 5%). The second simulation
included influences in only one direction (with 50% Gaussian noise) and
indicated a reasonable rate of correct detections (100% for both
methods).

MEG signal correlations were analyzed to support conclusions based
on the region-to-region interactions inferred by the GC/PSI results.
These correlations were based on mean encoding activity (gamma power
across all three encoding cue periods) in aPFC and DLPFC for each block.
Importantly, we sought to reduce the influence of zero-lag volume con-
duction effects that might artificially inflate inter-regional correlations.
In addition to our use of source localization and separate-hemisphere
ROIs to reduce volume conduction artifacts, we removed direct ROI-to-
ROI zero-lag correlations using alternating 50 ms segments to estimate
the mean encoding activities for each region. Odd numbered segments
were used for aPFC while even numbered segments were used for DLPFC
(alternating odd/even between the regions every block). Thus, the mean
encoding activity correlations reflect interactions with lags greater
than � 25 ms.

Results
Behavioral results
The experimental paradigm was designed to maximize perfor-
mance on novel task trials to test whether humans are truly capa-
ble of rapidly (i.e., in 5–10 s) learning novel tasks from verbal
instruction. Accuracy on the very first performance of the 64
novel tasks (60 per subject, counterbalanced to include 64 total)
was 91%. This high accuracy (chance was 25%) demonstrates
that individuals are capable of accurately forming and imple-
menting complex novel task sets within seconds.

We used mixed-effect repeated-measures ANOVAs (subjects
as a random effect) to test for accuracy differences across novel
and practiced trials. Analyses were collapsed across the fMRI and
MEG experiments (results were similar when analyzed sepa-
rately). Overall accuracy in the PRO paradigm was 92.1%. Accu-
racy for the novel tasks across all trials was 91.0 � 0.8% (mean �
between-subject SE), and accuracy for the practiced tasks was
93.1 � 0.8%. There was a significant increase in accuracy for
practiced relative to novel trials (F(1,22) � 9.22, p � 0.006). Nei-
ther the main effect of trial number (F(2,42) � 1.45, p � 0.25, NS)
nor the trial number by condition interaction (F(2,42) � 0.43, p �
0.65, NS) were significant.

The overall mean reaction time (RT) for all trials was 1295 ms.
The mean RT for novel trials was 1306 � 61 ms, while the mean
RT for practiced trials was 1283 � 60 ms. This difference was
statistically significant: F(1,22) � 8.82, p � 0.007. The main effect
of trial number was marginally significant (F(2,42) � 2.96, p �
0.063), while the trial number by condition interaction was not
significant (F(2,42) � 0.016, p � 0.98, NS).

The expected task switching effect— collapsed across novel
and practiced conditions and assessed by comparing trial 1
(1313 � 61 ms) with trial 2 (1281 � 58 ms)—was statistically
significant (F(1,22) � 4.40, p � 0.048). This effect was virtually
identical for novel and practiced trials (novel first vs second trial
mean, 32.10 ms; practiced first vs second trial mean, 32.79 ms;
both separately, F(1,22) � 4.85, p � 0.038). This suggests that the
amount of task interference was the same for novel and practiced
tasks. Note that there was no significant difference between trials
2 (1281 ms) and 3 (1286 ms; F(1,22) � 0.28, p � 0.60, NS).

fMRI results: double dissociations within PFC across novel
and practiced task preparation
We hypothesized that the processing order would reverse be-
tween aPFC and DLPFC across novel and practiced task prepa-
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ration, reflecting a reversal of preparatory processing stages with
practice. We expected the first preparatory stage to occur during
encoding (early) and the second preparatory stage to occur dur-
ing the first trial (late), based on the behavioral results and pre-
vious findings of task switching costs during first trials despite
extensive preparation time (Rubinstein et al., 2001; Monsell,
2003). Consistent with our predictions, we found a significant
practice-induced reversal of these regions’ activities across time
(region � task type � time period interaction; F(1,14) � 12.51,
p � 0.0033). DLPFC was more active for novel (than practiced)
tasks during encoding, but more active for practiced (than novel)
tasks during first trials (Fig. 3). In contrast, aPFC was more active
for practiced (than novel) tasks during encoding, but more active
for novel (than practiced) tasks during first trials.

To avoid circularity (Kriegeskorte et al., 2009), these analyses
used encoding activity estimated with the trial period ROIs and
the trial activity estimated with the encoding period ROIs (see
Materials and Methods for details). Results were similar to the

results reported here when either set of ROIs was used for esti-
mating both encoding and trial period activity.

This dissociation consisted of two double dissociations: an
encoding period double dissociation (region � task type interac-
tion; F(1,14) � 6.45, p � 0.02) and a first trial period double
dissociation (region � task type interaction; F(1,14) � 11.58, p �
0.004). All novel versus practiced mean activity differences were
statistically significant ( p � 0.05), except for mean DLPFC activ-
ity during the encoding period. However, DLPFC showed signif-
icantly greater novel than practiced activity late in the encoding
period (novel � practiced at 14 s poststimulus; p � 0.00095).

fMRI results: distinct sets of regions match the reversal
patterns of aPFC and DLPFC
Several sensory, motor, and semantic regions were coactive with
DLPFC during task preparation (encoding and first trial). These
coactive regions were identified in the same way as DLPFC and
aPFC (Fig. 4) and included premotor cortex (PMC), M1, A1, S1,
posterior parietal cortex (PPC), inferior parietal lobe (IPL), cin-
gulate/supplementary motor area (CMA/SMA), posterior tem-
poral lobe (pTL), and several others (Tables 1, 2). These additional
regions likely supported DLPFC during task preparation, since
task rule representations are thought to be stored in more poste-
rior regions and maintained in an active state via interactions
with DLPFC (Miller and Cohen, 2001; Yeung et al., 2006).

In contrast to the above set of regions coactive with DLPFC,
right anterior temporal lobe (aTL) was coactive with aPFC during
practiced task encoding (Fig. 4A). Consistent with these regions’
involvement in long-term memory (LTM) retrieval, posterior
cingulate cortex (PCC), a region strongly implicated in LTM pro-
cessing (Shannon and Buckner, 2004), was also active during
practiced task encoding.

MEG results replicate the major components of the
fMRI results
dSPM estimates for the encoding and first trial periods were con-
trasted across novel and practiced conditions and thresholded at
p � 0.05 (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). Left aPFC was more active for practiced
than novel tasks during the first encoding period. This pattern
was present throughout encoding but switched for the first trial,
with left aPFC being more active for novel than practiced tasks. In
contrast, right DLPFC was more active for novel than practiced
tasks during encoding, while it was more active for practiced than
novel tasks for the first trial. This set of MEG results replicates the
main fMRI findings in PFC.

MEG directed connectivity results: DLPFC to aPFC influences
reverse with practice
The higher temporal resolution afforded by MEG was used to
more directly test whether aPFC and DLPFC reverse their direc-
tion of influence (rather than just their order of processing)
across practiced and novel task preparation, as suggested by the
fMRI and dSPM MEG results. First trials and the three encoding
screens were chosen for analysis based on the likelihood of task
preparatory processing during these time periods. We were also
especially interested in early time periods because of evidence
that long-distance gamma band cortical interactions quickly be-
come equally bidirectional after initial dominant unidirectional
information flow (Gregoriou et al., 2009). The same ROIs used in
the fMRI analysis (encoding period) were used for these MEG
analyses.

Figure 3. A double dissociation in PFC demonstrates a reversal of processing order. A, The
activity patterns reversed between novel and practiced task preparation across aPFC and DLPFC.
We compared the fMRI activity across novel and practiced tasks during encoding (left) and first
trials (right). The encoding activity was identified using a condition � time interaction and
verified to have multiple time points significantly different in the indicated directions. The main
effect of condition (collapsed across time) was used for the trial activity. B, Left, DLPFC was more
active early (encoding) for novel tasks, while aPFC was more active early for practiced tasks.
Right, In contrast, DLPFC was more active late (trial 1) for practiced tasks, while aPFC was more
active late for novel tasks. These patterns are consistent with our hypotheses (see Fig. 1). The
double dissociation between aPFC and DLPFC was highly statistically significant ( p � 0.0033).
We ensured the two time periods involved the same regions by plotting the encoding activity
using the trial period ROIs and plotting the trial activity using the encoding period ROIs. This
pattern of results was replicated using MEG (see supplemental Fig. 1, available at www.
jneurosci.org as supplemental material).
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We found using GC and PSI that DLPFC dominantly influ-
enced aPFC during novel task preparation (first encoding
screen), as expected (Fig. 5 A, B, Table 3, 4). This influence was
reversed during practiced task preparation (second encoding
screen, possibly reflecting additional time necessary for LTM
retrieval of the practiced task set), again as predicted. These
dominant influences significantly differed between conditions
(novel greater than practiced) for DLPFC to aPFC in the GC
gamma band analysis (first encoding screen; t(412) � 2.34, p �
0.0197).

Analysis of first trials replicated the encoding period results
(Fig. 5C and Table 4). Using PSI, we found a significant dominant
influence from DLPFC to aPFC for novel first trials (t � 2.4, p �
0.019), with a significant reversal (novel vs practiced; t � 3.3, p �
0.001) to aPFC dominantly influencing DLPFC for practiced first
trials (t � 2.3, p � 0.023). These effects were not present during
second trials, and the DLPFC-to-aPFC influence was significantly
higher for first than second trials (t � 2.6, p � 0.01). These first trial
effects were not present in the gamma band GC results, possibly
because of interactions occurring outside gamma band frequencies.

Figure 4. fMRI activity patterns across encoding and trial periods. A, We used a condition � time interaction analysis to identify the brain regions with statistical differences in response shape
across conditions. Red regions have statistically significant time points larger for novel tasks, while blue regions have time points larger for practiced tasks. Previous research has found that PCC,
lateral temporal lobe (including aTL), and aPFC are involved in LTM retrieval. Their greater involvement in practiced task encoding suggests they are involved in LTM retrieval of practiced task sets.
B, Several regions outside PFC reversed between encoding and trial periods. Most of these regions (such as CMA/SMA) matched the DLPFC activity pattern, suggesting they are involved in rule
activation. For instance, in the case of CMA/SMA, this activation was likely for the motor rule.

Table 1. Novel versus practiced encoding activity voxel clusters

Cluster labels Direction of signal Hemisphere Voxels (3.2 mm 3) Talairach coordinate x Talairach coordinate y Talairach coordinate z Areas

aPFC P � N Left 31 �22.3 48.1 18.5 10
DLPFC N � P Right 29 29.6 26.5 35.3 9
IPL N � P Left 51 �52 �27.2 25.7 40
PCC P � N Both 40 �2 �46.8 29.7 31
M1/S1/S2 N � P Left 39 �18.3 �29.3 66.7 4, 3, 5
Fusiform/cerebellum N � P Right 24 25.7 �37.8 �19.7 20, 36
ACC N � P Left 24 �11.5 1.4 28.7 24
M1/S1 N � P Right 24 41.7 �25.4 58 3, 4
VLPFC N � P Left 23 �46.8 29.3 �4.2 47, 45
BG (Medial globus pallidus and putamen) N � P Left 16 �17 �2.8
aTL P � N Right 15 51.1 �2.5 �24.8 20, 21
IFJ N � P Right 15 27.8 0.5 32 9, 6
PMC N � P Right 15 22.9 �13.4 47.5 6
VLPFC N � P Right 14 48.9 25.5 �0.7 47, 45
PMC N � P Left 14 �32 �15.5 60.5 6
Cuneus N � P Left 13 �10.2 �62.6 5.6 18, 19

The contrast was defined by a condition � time (novel vs practiced � 11 time points) interaction (p � 0.05, FWE corrected for lateral PFC, FDR corrected for all other voxels). P � N, Practiced significantly greater than novel; N � P, novel
significantly greater than practiced; ACC, anterior cingulate cortex; BG, basal ganglia.

Table 2. Novel versus practiced trial activity voxel clusters

Cluster labels Direction of signal Hemisphere Voxels (3.2 mm 3) Talairach coordinate x Talairach coordinate y Talairach coordinate z Areas

aPFC N � P Left 148 �29.4 46.6 11.5 10, 11
DLPFC P � N Right 113 25.5 28.7 29.7 9
PMC/M1/S1/A1/IPL/pTL P � N Left 318 �51.2 �19.9 20.3 44, 6, 4, 3, 13, 22, 41, 43, 40
PPC P � N Both 240 �8 �52.2 58 7
PMC/M1/S1/A1/IPL/pTL P � N Right 228 57.9 �24.4 21.4 40, 6, 22, 41, 42, 21
SMA/CMA P � N Both 204 �0.9 �7.6 47.9 6, 24

The contrast was defined by novel trials versus practiced trials (p � 0.05, FWE corrected). P � N, Practiced significantly greater than novel; N � P, novel significantly greater than practiced.
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Supporting the directed connectivity results, we found sig-
nificant correlations between aPFC and DLPFC mean encod-
ing activities (based on nonzero lag mean gamma power). The
regions correlated at r � 0.32 ( p � 2e-10) for practiced task
preparation and r � 0.35 ( p � 1e-12) for novel task prepara-
tion (Fig. 5 D, E).

Discussion
Previous research suggests individual task rule representations
are activated during task preparation along with a higher-level
goal representation that integrates and coordinates those rules
during task performance. We hypothesized that the order of these
two processes would reverse between novel and practiced task
preparation, with novel preparation involving activation of indi-
vidual rules before their integration by a higher-level task repre-
sentation, and practiced preparation involving cued recall of a

higher-level task representation that then
activates individual rules from memory.
Accordingly, we predicted a reversal of in-
formation flow between DLPFC (a lower-
level control region) and aPFC (a higher-
level control region) in the transition
from novel to practiced task preparation.
This prediction was confirmed by an
fMRI double dissociation of aPFC and
DLPFC across novel and practiced task
preparation (Fig. 3) and further sup-
ported by a reversal in MEG directed
connectivity between aPFC and DLPFC
(Fig. 5).

The present study investigated two
ways in which the human brain is rapidly
reconfigured for task performance. Im-
portantly, novel task preparation can be
characterized in terms of RITL, a powerful
form of learning largely unique to hu-
mans. We show here that humans can
rapidly (i.e., within 5–10 s) learn complex
novel tasks and perform accurately with
no practice (91% on first trials). Other an-
imals typically use slower forms of learn-
ing such as operant conditioning, which
can take days or months (especially for
abstract or complex tasks). Some nonhu-
man primates can perform RITL using
imitation, but imitation is typically inef-
fective for abstract and complex tasks like
those used here given the many examples
necessary to specify the appropriate task
rules. Compatible with the present study’s
neural localization of this human ability,
aPFC and DLPFC are among a select
number of regions that grew substantially
since our common ancestor with chim-
panzees (Semendeferi et al., 2001; Avants
et al., 2006), suggesting that development
of these (and related) regions first allowed
RITL in early humans. These regions likely
provide humans with the enhanced WM in-
tegration and subgoaling skills (Braver and
Bongiolatti, 2002; De Pisapia et al., 2007)
necessary for rapidly integrating instruc-
tions into coherent task sets during RITL.

Previous studies have suggested that aPFC specifies task sets in
DLPFC and more posterior regions during practiced task prepa-
ration (Sakai and Passingham, 2003, 2006). However, these stud-
ies did not demonstrate the direction of information flow
between these regions, leaving open the possibility that posterior
regions actually drive activity in anterior regions during task
preparation. Given that these studies all used practiced tasks and
given that practiced task preparation is likely a top-down process
involving retrieval of task sets from LTM (Mayr and Kliegl, 2003),
we expected (and demonstrated) that aPFC indeed drives activity
in DLPFC during practiced task preparation (aPFC to DLPFC).
This is in sharp contrast to novel task preparation, which likely
involves a bottom-up series of transformations from instruction
stimuli to rule representations to an integrated task representa-
tion. Compatible with a shift from bottom-up to top-down pro-
cessing, we show here that DLPFC originally drives aPFC activity

Figure 5. MEG directed connectivity confirms the reversal of DLPFC and aPFC information flow. GC and PSI were used to
estimate the directed influences between the DLPFC and aPFC regions (as defined by the fMRI experiment) during task encoding.
Note that these directed connectivity methods are correlational in nature and are not able to assess true causality (though
modulation of these measures by experimental manipulation can strengthen that inference). A, GC of gamma power
indicated that aPFC and DLPFC influence each other bidirectionally during encoding (largest p � 6e-37). There was a significant
dominant influence from DLPFC to aPFC during the first novel task encoding screen and a significant dominant influence from aPFC
to DLPFC during the second practiced task encoding screen. This supports the prediction of bottom-up information flow during
novel task preparation and top-down information flow during practiced task preparation. See Tables 3 and 4 for details. Practiced
task interactions may be delayed relative to novel task interactions because of the additional time necessary for retrieval of
higher-level task information from LTM. B, The PSI statistic, an alternative to GC with fewer false positives for noisy data (Nolte et
al., 2008), supports the GC finding. C, This reversal of information flow was also present during first trials and was significantly
different between novel and practiced task preparation (p � 0.001). D, E, The gamma power estimates used for GC analysis
(averaged by block) were significantly correlated between aPFC and DLPFC, indicating strong functional connectivity and support-
ing the conclusions based on GC and PSI.
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(DLPFC to aPFC) during RITL, but the di-
rection of information flow reverses with
practice (as task sets become familiar
enough to be retrieved from memory).

This reversal of information flow is
compatible with—indeed, it was pre-
dicted based on—theories of an anterior-
to-posterior hierarchy in PFC (Koechlin
et al., 2003; Badre, 2008). The present set
of results suggests the need to consolidate
seemingly opposing theories of the hierar-
chical organization of PFC. Rather than
supporting just a representational PFC hi-
erarchy [involving increasing relational
complexity (Bunge et al., 2005; De Pisapia
et al., 2007) and conceptual abstraction
(Badre and D’Esposito, 2007; Christoff et
al., 2009)] or a control PFC hierarchy [in-
volving actions/procedures in a temporal
or goal hierarchy (Koechlin et al., 1999;
Fuster, 2001; Botvinick, 2008)], the data
support each one in turn. The aPFC-to-
DLPFC information flow is most compat-
ible with a control PFC hierarchy in which
higher-level regions influence lower-level
regions to control/coordinate their activ-
ities. In contrast, the DLPFC-to-aPFC in-
formation flow is most compatible with a
representational PFC hierarchy in which
lower-level regions feed information up-
ward to be integrated into higher-level
representations. However, it may be that
the PFC hierarchy functions by represent-
ing higher-order relationships at each hi-
erarchical stage, with the activation of
these representations controlling lower-level stages via feedback
connections. According to this interpretation, the DLPFC-to-
aPFC activation during novel task preparation forms a higher-
level task set representation in aPFC (which can be later retrieved
from LTM during practiced task preparation) that controls/
coordinates the rule representations in DLPFC for subsequent
task performance. Given that there are likely other plausible
interpretations of the present results, however, further re-
search is necessary to verify this interpretation.

In addition to a hierarchical account of PFC, the present re-
sults are also compatible with theories suggesting DLPFC con-
trols activity in posterior regions in preparation for task
performance (Miller and Cohen, 2001; Yeung et al., 2006). Most
posterior regions were coactive with DLPFC (rather than aPFC),
suggesting that DLPFC encodes rule representations in WM and
actively maintains them via interactions with these regions. Some
of the posterior regions included portions of auditory, visual,
motor, and somatosensory cortices, which is compatible with
recent evidence that even when considered abstractly (i.e., with
words and in imagined situations), semantic rules activate the
same brain areas that would be involved in processing that infor-
mation if it were directly experienced (e.g., visual cortex for color
rules, auditory cortex for sound rules, SMA for motor rules, etc.)
(Goldberg et al., 2006). Other posterior regions that coactivate
with DLPFC have been implicated in logic rule representation [in
addition to DLPFC itself (Miller et al., 2002)], including pTL
(Bunge et al., 2003; Donohue et al., 2005), PMC (Wallis and
Miller, 2003), and PPC (Stoet and Snyder, 2004). Note that ven-

trolateral PFC (VLPFC) was also involved in novel task encoding,
compatible with evidence that it is involved in LTM retrieval of
individual rules (as opposed to entire task sets) (Donohue et al.,
2005). This set of results, in conjunction with previous find-
ings, suggests that individual rule representations in posterior
regions are prepared for task performance via interactions
with lateral PFC.

We have emphasized task preparation during first trials, al-
though this process might be better characterized as initial task
execution. Importantly, it has been suggested that initial task
execution involves preparatory processes that require the pres-
ence of task stimuli to complete (Rubinstein et al., 2001; Monsell,
2003). Supporting this view, we found that first trials were slower
than second trials (while second and third trials showed no dif-
ferences), suggesting an additional preparatory process might be
present during first trials only. Also supporting this conclusion,
we found with MEG that the DLPFC-to-aPFC influence during
novel task encoding remained during first trials (suggesting a
continuation of preparatory processes) but not second trials.
However, if these first trial effects were caused by some process
other than task preparation, the present results would need to be
reinterpreted in terms of task preparation versus task execution
(rather than two preparatory processes). This would entail a shift
from DLPFC during task preparation to aPFC during task imple-
mentation for novel tasks and from aPFC during task preparation
to DLPFC during task implementation for practiced tasks, sug-
gesting a shift in the location of ongoing task control with prac-
tice. Further research is necessary to assess the extent to which

Table 3. DLPFC7aPFC: GC directional connectivity estimates

GC (gamma power)

aPFC3DLPFC DLPFC3aPFC

Encoding stimulus 1 (1–1000 ms)
Practiced d � 0.77, t � 18/p � 4.6e-55 d � 0.81, t � 18/p � 2e-55
Novel d � 0.67, t � 16/p � 6e-45 d � 0.88 (*D), t � 21/p � 2.8e-64

Encoding stimulus 2 (1–1000 ms)
Practiced d � 0.80 (*D), t � 19/p � 1.5e-57 d � 0.59, t � 14/p � 6e-37
Novel d � 0.77, t � 18/p � 1.9e-54 d � 0.82, t � 18/p � 1.9e-53

Encoding stimulus 3 (1–1000 ms)
Practiced d � 0.81, t � 19/p � 2e-56 d � 0.77, t � 17/p � 2e-50
Novel d � 0.80, t � 18/p � 8e-55 d � 0.76, t � 17/p � 6.7e-51

Trial 1 (1–2000 ms)
Practiced d � 0.45, t � 8/p � 8e-15 d � 0.46, t � 7/p � 6e-12
Novel d � 0.47, t � 7/p � 1e-10 d � 0.42, t � 6/p � 2e-9

Note that unlike PSI, the GC results are of gamma band activity only and therefore may have filtered out some effects in other frequency bands (such as during
trial 1). d, Effect size (Cohen’s d) of Granger causality magnitudes; t, t value of magnitudes versus 0; p, p value of the t test versus 0; *D, Significant dominant
influence (A3B vs B3A).

Table 4. DLPFC7aPFC: PSI directional connectivity estimates

PSI (dominant direction only)

aPFC3DLPFC DLPFC3aPFC

Encoding stimulus 1 (1–1000 ms)
Practiced d � 0.04, t � 0.62/p � 0.53
Novel d � 0.06 (*D), t � 2.2/p � 0.027

Encoding stimulus 2 (1–1000 ms)
Practiced d � 0.14 (*D), t � 2.8/p � 0.006
Novel d � 0.06, t � 1.4/p � 0.17

Encoding stimulus 3 (1–1000 ms)
Practiced d � 0.0008, t � 0.15/p � 0.88
Novel d � 0.065, t � 1.4/p � 0.15

Trial 1 (1–2000 ms)
Practiced d � 0.10 (*C) (*D), t � 2.3/p � 0.023
Novel d � 0.09 (*C) (*D), t � 2.4/p � 0.019

d, Effect size (Cohen’s d) of PSI magnitudes; t, t value of magnitudes versus 0; p, p value of the t test versus 0; *C, significant condition (novel versus practiced)
effect; *D, Significant dominant influence (A3B versus B3A).
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first trial effects that differentiate between novel and practiced
tasks are specific to task execution rather than task preparation.

Although the hemispheric lateralization effect in PFC was use-
ful for accurate MEG source localization, it was not expected a
priori. It is possible that right DLPFC was involved because of the
need to represent sensory semantic categories [a process associ-
ated with right-lateralized function (Seger et al., 2000)] in the
particular task paradigm used here. Left aPFC may have been
involved because of the need to perform WM integration during
novel task preparation, as WM integration has been better asso-
ciated with left than right aPFC (De Pisapia et al., 2007). This
suggests that the hemispheric effect in aPFC would replicate in a
different experimental context, while a different set of task rules
would possibly involve left DLPFC instead of (or in addition to)
right DLPFC. This conclusion is also supported by findings indi-
cating that the same aPFC region interacts with different poste-
rior PFC regions depending on the particular task being prepared
for (Sakai and Passingham, 2003).

Implicit in task preparation is the need to resolve interference
from previously used task sets. Some of the preparatory brain
activity certainly reflected this interference resolution process.
Importantly, however, the results indicate that the level of inter-
ference did not differ between novel and practiced tasks, suggest-
ing that the observed results do not reflect interference-related
processes. Evidence for this comes from two sources. First, as-
suming there was additional interference for one condition (and
assuming PFC resolves that interference), then that condition
should always involve greater PFC activity than the other; yet, we
observed a reversal in which both conditions involved substantial
PFC activity. Second, the task switching costs [which partially
reflect task interference (Wylie and Allport, 2000)] were virtually
identical (within 1 ms) for novel and practiced tasks, strongly
suggesting that any interference from previous tasks was equated
across conditions.

It was perhaps surprising that there was relatively little perfor-
mance benefit from practice (just 2% accuracy, 23 ms RT). One
possible explanation is that excessive time to prepare (5–10 s) and
respond (average 1295 ms) allowed a lazy preparation strategy
that reduced differences between conditions. Alternatively, the
human brain may be highly effective at transferring rules to new
task contexts during RITL (despite potentially massive rule inter-
ference) to the point where performance is little affected by novel
rule combinations. Singley and Anderson (1989; chapter 3) dem-
onstrated this ability using complex text editing tasks, showing
that transfer of rules practiced in one task improves performance
of related novel tasks beyond any performance decrement from
interference. This benefit of practiced rule transfer may explain
subjects’ minimal rule interference as well as their high perfor-
mance on novel tasks here.

We have shown a reversal in processing order and informa-
tion flow between aPFC and DLPFC that suggests a fundamental
difference between novel and practiced task preparation pro-
cesses. Novel task preparation likely involves activation of indi-
vidual rules in posterior regions and DLPFC before those rules
are integrated into a unified task set by aPFC for coordinated task
performance. In contrast, practiced task preparation likely in-
volves retrieval of a higher-level task set representation from
LTM that is loaded into aPFC for reconfiguration of DLPFC and
posterior regions representing individual rules. This shift in dy-
namics between novel and practiced task preparation illustrates
that there are two ways in which humans are able to rapidly
reconfigure their minds via instruction. Importantly, the novel
task preparation process begins to explain how we are able to

rapidly learn a virtually infinite variety of possible tasks (i.e.,
RITL), allowing our species to efficiently adapt to the many
unique situations and new technologies of an ever-changing
world.
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