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The basic physical attributes of brain networks have been exten-
sively characterized, yet the functional units (for example, 
neurons, brain regions) and the dynamics that produce cogni-

tion and behavior remain poorly understood. We suggest that a focus 
on brain network interactions—often termed functional connectiv-
ity (FC)—may be a primary means of understanding brain function 
across these levels of organization, by identifying interactions at each 
level and, ultimately, how those interactions produce cognition.

Yet FC as it is currently defined suffers from a variety of theo-
retical and practical issues that limit its ability to advance neurosci-
entific understanding. In this Perspective we identify these issues 
and propose a framework to begin remedying them (Table 1). This 
framework will appear familiar to experienced FC researchers, as it 
incorporates insights and best practices from FC research approaches 
(including effective connectivity) and beyond. Nevertheless, we 
expect it to be useful for both novice and expert FC researchers, due 
to insights gained from integrating across typically separate areas 
of FC research. We build on previous discussions on this topic1–6 
with the goal of making this debate more accessible and suggest-
ing a novel way forward. As interactions among neural units are 
central to neurocognitive function, we anticipate that fundamental 
improvements in FC theory and methodology will have widespread 
benefits for advancing neuroscience.

Perhaps the most fundamental issue with FC in its current con-
ceptualization is how it is typically defined: as the statistical associa-
tion between measured brain signals6,7. This is problematic because 
it fails to distinguish target theoretical properties of interest from 
the methods used to infer those properties. This is akin to defin-
ing the moon as the photons that hit one’s retina when looking at 

a particular location in the sky (a common method for detecting 
the moon), rather than as a physical object with a variety of prop-
erties consistent with the laws of physics (theoretical properties of  
interest). In other words, it confuses the map with the territory—
a classic logical fallacy8 that impedes scientific progress. As these 
are issues with fundamental scientific inferences, the framework 
(Table 1) is applicable to a variety of scientific problems, though we 
emphasize its application to FC research here.

Generalizing insights from existing FC approaches1,2, we propose 
that the ultimate phenomenon of theoretical interest in all FC research 
is understanding the causal interaction among neural entities. This 
clearly runs counter to the typical definition of FC as the non-causal 
‘statistical association’ between measured brain signals. Nevertheless, 
it is in line with the kinds of inferences that should be sought in FC 
research, given that a physical means of interaction between neural 
entities is implied by the term ‘connectivity’ (as in structural and/
or axonal connectivity). Further, FC researchers already work within 
a causal inference framework, whether they realize it or not. For 
instance, FC is often used to identify sets of correlated brain regions 
that are then commonly treated as real causal entities (physical 
systems) known as large-scale brain networks or brain systems9–12. 
Additionally, when it was discovered that in-scanner motion was 
strongly associated with functional MRI (fMRI)-based FC estimates, 
this was generally treated as a causal problem, with motion as an 
alternate causal path confounding proper FC inference13–15.

This tendency to already interpret FC measures in a causal 
framework suggests it would be natural to elevate causal reasoning 
from implicit to explicit in FC research. The kinds of causal infer-
ences that can be made using FC methods is often limited, however, 
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because simple statistical measures such as coherence and Pearson 
correlation allow ambiguous causal paths among measured neu-
ral signals. Despite their limitations, we illustrate below how even 
simple FC measures can be informative (albeit often weakly) with 
regard to causal inferences. Notably, FC measures labeled ‘effec-
tive connectivity’ can often enable more precise causal inferences2,6, 
though they are not without their own limitations (see below). 
Despite these limitations (and in contrast to some others16) we 
view any narrowing of the space of likely causal graphs as progress 
toward the ultimate goal of strong causal inferences in FC research.

Our proposal to shift the focus of FC from association to causal 
interaction derives from many considerations, though in large part 
from the increased confidence in defining causality and making 
causal inferences that has coincided with what has been called the 
‘Causal Revolution’ occurring over the past 25 years17–21. Central to 
this increased confidence have been demonstrations of new meth-
ods for making valid causal inferences from observational data, 
expanding causal inference beyond the limited purview of random-
ized controlled experiments18,22.

Especially transformative to progress in defining causality is 
the realization (building on centuries of work in philosophy23) that 
counterfactuals (for example, experimental control) can be used 
to conclusively define causality18,24. As a particularly clear example 
of counterfactual causality in science, the concept of a controlled 
experiment implicitly invokes this definition: comparing a treat-
ment condition (with the cause present) with a control condition 
(with the cause absent) informs us of what would have happened 
in the treatment condition had the treatment not been applied. 
Accordingly, we define the ‘cause’ of an observed neural event (the 
‘effect’) as a preceding neural event whose occurrence is neces-
sary to observe the effect. Causality can thus be demonstrated by 
observing a system under two conditions, differing only in the pres-
ence or absence of the causing event. Note that this focus on neural 
interactions is a more circumscribed definition of causality than the 
cognition-focused causation typically used in lesion and stimula-
tion studies in neuroscience (i.e., that activity in a neural entity is 
necessary for a cognitive function). Even with this more modest 
goal for causal inference, making such inferences is complicated by 
methodological limitations. Making progress despite these limita-
tions is a major focus of this Perspective.

One solution to the problems faced by FC research might be 
to abandon the term ‘functional connectivity’ altogether—an idea 
espoused by at least one of the authors (P.A.V.S.). Beyond issues 
with terminology, our primary goal in developing the current 
framework is to create a unifying conceptualization of FC, accom-
modating both methodological and target theoretical properties 
using the logic of causal inference. One prominent divide among 

FC methods is the supposed distinction between effective con-
nectivity and other FC approaches6. Unfortunately, there is some 
confusion in the field over how to define the concept of effective 
connectivity (although attempts have been made to address this1,2), 
with emphasis sometimes placed on the target theoretical property 
of whether a connection is direct vs. indirect (for example, via a 
third brain region)6,25,26 or whether a connection is directed vs. undi-
rected or bidirectional2,6,27. We seek to remedy this situation by plac-
ing all such methods under the umbrella of FC, with a systematic 
taxonomy that clarifies what theoretical properties each FC method 
targets and, hence, what aspects of brain network interactions each 
is capable of characterizing.

Another major goal of developing an FC-focused framework is 
to bring best practices for grounding FC findings in physical mech-
anisms into focus. Bridging the gap between FC observations and 
physical mechanisms is clearly easier in some cases (for example, 
invasive animal models) than others (for example, noninvasive 
methods such as fMRI and electroencephalography (EEG)). This is 
in part due to the indirect nature of methods like fMRI and EEG, 
which introduces ambiguities into interpretation (Fig. 1). We frame 
this problem as a matter of mapping observations to a hypothesis 
search space28,29 consisting of different possible causal interactions 
among neural entities, with each observation constraining the like-
lihood of each hypothesis. With proper validation of FC methods, 
we suggest it is possible to produce minimally ambiguous inter-
pretations, especially when multiple FC methods are combined to 
create a convergent interpretation. The framework builds on recent 
simulation-based and empirical validations of FC measures30–32 to 
suggest a way forward for FC method validation, with the goal of 
making accurate inferences about brain function. We expect that 
constraining the hypothesis space by seeking convergence across 
validated methodologies and replications will bring us toward a 
mechanistic understanding of brain network functions33.

In the following sections we begin with a summary of the pro-
posed framework. Remaining issues with FC interpretation are 
then detailed, along with a general strategy for validating mecha-
nistic interpretations of FC methods to help overcome these issues. 
Suggestions for how to apply these principles to commonly used FC 
methods (fMRI, EEG, and intracranial recordings) are also provided 
as Supplementary Information. Together, the proposed framework 
integrates best practices from across FC research to provide a way 
toward achieving more valid inferences of the FC properties that are 
of theoretical interest to the neuroscience community.

Summary of the proposed framework
We propose a framework that incorporates best practices and 
insights from diverse areas of FC research, targeting three key  

Table 1 | Overview of the FC framework, defining the three main types of properties relevant for drawing mechanistic inferences: 
theoretical, methodological, and confounding

Theoretical properties Methodological properties Confounding properties

Description Properties of the system about which 
the researcher would like to draw 
inferences. Must relate to causal 
interactions among neural entities.

Properties inherent to the observational or 
analytic methodology, which will influence 
the details of the inferences made regarding 
theoretical properties of interest

Properties of the data that may result 
in spurious associations that can lead 
to erroneous inferences regarding the 
theoretical properties of interest

Common Examples • Directness: mono- or polysynaptic
• Directionality: A→B, A←B, A↔B
• Weight: synaptic strength
• Linearity: linear or nonlinear

• Spatial resolution and coverage
• Temporal resolution
• Conditions: experimental  
manipulation, cohort
• Observational pathway
• Neural entities: spatially contiguous
• Interaction estimate, e.g., correlation

• Motion artifacts
• Cardiac artifacts
• Respiratory artifacts
• Unmeasured neural sources
• Spatial autocorrelation

Examples of each property are provided, along with the types of assumptions required for each. Note that these are meant to be illustrative, not exhaustive—additional properties can be added by the 
researcher as appropriate.
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gaps: (i) the need for an account of FC as both a theoretical and 
methodological construct, (ii) the need to reconcile functional 
(and effective) connectivity approaches within a single theoretical 
ontology grounded in biological mechanisms, and (iii) a system-
atic means of validating theoretically meaningful interpretations of 
results obtained using FC methods.

The FC framework is a conceptual structure within which a 
taxonomy of FC methods and relevant inferences can be detailed 
(see Box 1 for definitions of key terms). The taxonomy consists of a 
series of mappings, each between a methodological procedure and 
the inferences that can be based on it (Fig. 2a). These inferences are 
built from three classes of property: (i) target theoretical proper-
ties, representing the potential scientific purposes of a method and 
what inferences of theoretical importance it can support; (ii) meth-
odological properties, representing limitations and enhancements 
imposed by the method that are not of direct theoretical interest 
for understanding the brain; and (iii) confounding properties, alter-
nate (often non-neural) causes of observed effects, which must be 
addressed to make valid inferences.

As a brief illustration of this framework, consider a statistically 
significant Pearson correlation between two brain regions based 
on resting-state fMRI data. A target theoretical property could be 
whether the two regions causally interact at rest. The target theo-
retical properties that can be validly targeted by a given method are 

limited by methodological properties as well as confounding prop-
erties. For instance, methodological properties indicate several 
ambiguities when using Pearson correlation with fMRI data, which 

Box 1 | Definitions of key terms

Neural entity: a spatially contiguous territory of neural tissue 
that generates a signal of interest. Examples of neural entities: an 
individual neuron, a cortical column, a cortical region.

Functional connectivity (FC): causal interactions between 
neural entities. These interactions are specified by the theoretical 
properties of causal interactions (see definition below).

Causal interaction: a neural event that, had it not occurred, its 
effect on another neural entity also would not have occurred. 
This is referred to as the counterfactual definition of causality. 
This definition is common in scientific reasoning: a control 
condition provides the alternative (counterfactual) case in which 
a proposed cause is altered, and observation of an altered effect 
constitutes evidence supporting the causal inference. While 
direct experimentally controlled manipulation is the ideal for 
identifying causal interactions, decades of research suggests 
observational data can be used to validly constrain causal 
inferences in many cases.

Target theoretical property: a property describing an aspect 
of causal interactions between neural entities that constitutes 
the inferential target of a given FC method. Examples of such 
properties: directionality, directness, linearity, and weight or 
strength. If an FC method is not selective for a given theoretical 
property, it is said to be ‘ambiguous’ with respect to that property. 
In Fig. 1, target theoretical properties are denoted as κ and 
inferences about them are denoted as κ.̂

Methodological property: a property describing the 
observational method by which inferences about FC are 
supported.

Confounding property: a factor that induces a spurious 
association between the neural entities of interest, such that this 
association disappears if the factor is kept constant.

Observational pathway: an abstract description of the mapping, 
via representational levels, from target physical mechanisms 
(action potentials or postsynaptic potentials) to neural entity 
to sensors collecting observations. Referring to Fig. 1, the 
observational pathway maps from real causal interactions 
(denoted by κ) to observed dependencies (denoted by δ). 
Mapping backwards from observed dependencies allows us to 
estimate causal interactions (denoted by κ)̂.

FC methods: approaches that seek to characterize causal 
interactions between neural entities, with potential limitations 
regarding what aspects of causal inferences are valid for a  
given approach.

Effective connectivity methods: following Friston et  al.86, 
approaches that use parameterized models to characterize 
causal interactions between neural entities. This has been 
operationalized as the simplest circuit diagram (parameterized 
model) that explains observed responses87. Under the proposed 
framework, effective connectivity methods can be considered 
a subset of FC methods, since both seek to characterize causal 
interactions between neural entities.

Neural level
The neural mechanism
we aim to characterize

Forward problem
(observation equation)

Observational level
Confounding and

methodological properties

Inferential level
Inferences about

theoretical FC properties

Inverse problem
(estimation of neural sources)

Neural
entity

Confounding
properties

Neural
activity

Imaging
sensor

Estimated
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Estimated
neural activity

Significant
FC measure
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FC measure

Measured
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Observed
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connection
(weighted by
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δ δ

δ

κ

κ
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Fig. 1 | Ontological levels relevant to mechanistic interpretation of 
FC, defining the pathway from neural mechanisms (neural level) to 
imaging measurements (observational level) to inferences about target 
theoretical properties (inferential level). At the neural level, physical 
connections between regions, denoted κ, depend on the signal strength 
(spike rate) and synaptic strength. At the observational level, time series 
recorded with imaging sensors (for example, fMRI voxels, EEG electrodes, 
intracranial electrodes) represent neural signals that are spatiotemporally 
filtered through the observational pathway (forward problem). These 
time series also contain measurement noise and confounding variance. 
Observed dependencies at this level are denoted δ. At the inferential level, 
we attempt to infer (estimate) FC properties of interest, possibly with a 
degree of ambiguity, at the neural level from our observed time series. 
This can be done by mapping backward from sensors to neural entities 
(solving the inverse problem) to estimate the underlying neural activity 
and compute FC measures, denoted ̂κ, on this estimated activity. However, 
methodological and confounding properties limit the accuracy we can 
achieve with this backward mapping.
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undermine support for the inference. Specifically, it is ambigu-
ous whether the potential interaction, mediated via action poten-
tials over axons, is direct or involves other regions. The direction 
of the interaction is also ambiguous, as are other properties (for 
example, its temporal frequency). Finally, the target inference can 
be made only when confounding properties inconsistent with the 
target theoretical properties have been controlled for (for example, 
correction for motion artifacts). Given these properties, a statisti-
cally significant FC result would support the following inference 
(which is somewhat weaker than the target inference): the two 
regions interact (directly or indirectly, with ambiguous direction-
ality) and/or share mutual interactions with other regions during 
resting state. See Supplementary Information for additional details. 
Despite the weakness of this inference, it informs our understand-
ing of these two regions by revealing that some causal models are 
more likely than others (Fig. 2). It also points toward the need to 
use and/or develop better methods for strengthening the intended 
causal inference.

We next describe how this framework addresses the three core 
problems with FC research mentioned above.

Problem 1: the need for an account of FC as both a theoretical 
and methodological construct. Every methodological approach 
should have one or more theoretical targets if it seeks to be explana-
tory rather than just descriptive. Unfortunately, the FC literature 
has often failed to identify the target theoretical construct or has 
inferred target theoretical constructs beyond those permitted by the 
methodological properties of a given FC approach. This has led to 
a tendency to interpret the results of a specific approach in terms of 
biological mechanisms, when that approach does not warrant this 
level of interpretation. We address this by framing FC in terms of 
mapping empirical results to target theoretical properties via meth-
odological properties. This allows us to (i) reduce the temptation 
to over-interpret findings and (ii) identify the limitations of a given 
methodology with respect to its ability to support inferences target-
ing biological mechanisms.

Two uses of FC that have recently become popular—dynamic FC 
and FC–behavior associations—are particularly illustrative of this 
problem. In the case of dynamic FC, time-varying changes in FC are 
often characterized34,35 without considering the mechanisms driv-
ing the FC measures (and their changes) to begin with. Similarly, 
FC–behavior associations have revealed potential insights into the 
neural basis of cognition36–38, yet incomplete understanding of the 
mechanistic basis of FC also limits the utility of this approach. It 
will therefore be important to advance causal understanding of FC 
measures so results involving dynamic FC and FC–behavior asso-
ciations (along with other uses of FC methodology) provide mecha-
nistic insight into brain function.

It is worth noting that effective connectivity approaches, such 
as dynamic causal modelling, Granger causality, or Bayesian search 
methods, are typically clearer about their target theoretical infer-
ences. For instance, dynamic causal modelling restricts FC-related 
inferences to a particular structural graph and a specific form of 
directed FC among a set of nodes39. Adding assumptions to their 
modeling of FC helps link observations to these target theoreti-
cal properties. However, these assumptions are often by necessity 
unrealistic or overly simplistic—for instance, only incorporating a 
small subset of brain regions (and failing to account for extrane-
ous influences), evaluating only unrealistically sparse networks, or 
modelling properties such as connection weight as a single global 
parameter40–42. The current framework seeks to expand the sort of 
reasoning underlying effective connectivity approaches to the whole 
of FC-related research, while acknowledging an inherent trade-off 
between the competing imperatives of accounting for complex-
ity and potential confounds, on the one hand, and modelling the  
nervous system in its entirety on the other.

Problem 2: the need to integrate functional (and effective) con-
nectivity approaches into a single framework. Sixteen years ago 
the classic paper “The elusive concept of brain connectivity”7 made 
a strong case that connectivity research was not a cumulative scien-
tific enterprise. According to Horwitz, “Until it is understood what 
each definition means in terms of an underlying neural substrate, 
comparisons of functional and/or effective connectivity across stud-
ies may appear inconsistent and should be performed with great 
caution.”7 The current framework thus seeks to develop a ‘common 
currency’ for comparison of results across different FC measures. 
This will allow corroboration of theoretically important results 
across FC approaches, which may together constrain neurocogni-
tive theories (Fig. 2a).

We agree with Horwitz7 that it is essential to understand the 
mapping between each FC measure and its neural substrates. As 
measurements entail different levels of ambiguity, it is important 
to be explicit about the limitations and assumptions a particular 
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Method B
observation
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b

c

Target theoretical 
properties 

(in hypothesis state space)

Methodological
properties
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properties

Confounding 
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Confounding 
properties
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r = 0.28
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Fig. 2 | The conceptual structure of the FC framework. a, Each method 
involves a mapping between observations and target theoretical properties, 
mediated by methodological properties that enable and/or restrict the 
possible inferences that can be made. Methodological properties merely 
shift what inferences are possible, but confounding properties can 
completely block inferences by creating ambiguities outside the space 
of causal brain network configurations (for example, subject motion 
obscuring FC observations nullifies inferences about neural mechanisms 
causing FC observations). The grid illustrates the space of all hypotheses 
under consideration, with each grid point being a particular causal 
network configuration (of which only one can be true). Each method’s 
color indicates which hypotheses that method’s results are compatible 
with (more coverage = more ambiguity). The overlap between methods 
(purple) illustrates the ability to use multiple FC methods to converge on 
a more narrow set of possibilities. This advances theory through logical 
conjunctions across FC methods. b, An illustration of a correlation-based 
FC measure in a simple three-node network. The directionality of influences 
is ambiguous (based on Pearson correlation (r) of neural time series; left) 
but this nonetheless constrains the hypothesis space (both likely and 
unlikely; right) by providing a higher probability of some causal network 
configurations than others. c, Another illustration of a simple three-node 
network, this time with no correlation between the bottom two nodes. 
Correlation does especially well in this scenario, given that only a ‘collider’ 
graph is likely with this set of correlations in a three-node system85.
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Box 2 | How to immediately begin improving causal inferences beyond correlation-based FC: confound reduction using partial 
correlation and alternatives

Even if all confounding properties due to measurement artifacts 
are accounted for (for example, motion artifacts driving spurious 
causal inferences) many potential confounds exist among neural 
entities. Such confounders are neural entities that directly cause 
activity in two or more other neural entities (Box 2 Figure a). Con-
founders can lead to spurious causal inferences, such as the er-
roneous conclusion that stimulating one neural entity will affect 
another neural entity (Box 2 Figure a). This confounding problem 
is perhaps the biggest barrier to progress in FC research and in 
causal inference generally18. While many FC methods can make 
approximately correct predictions regarding effects of causal in-
terventions despite ambiguities in other causal configurations (for 
example, chains and colliders; Box 2 Figure b,c), this is not the case 
for confounders16.

The worst-case scenario for the confounding problem is when 
unmeasured confounders exist, given that there are limited 
options (for example, directly stimulating each neural entity to 
observe its causal effect) for accounting for such confounders. 
The whole-brain coverage of modern neuroimaging methods 
(fMRI, EEG and MEG) provides some hope of being able to 
measure all neural entities at a given level of organization (for 
example, brain regions). In practice, however, we are likely 
not observing clean signal from all neural entities of interest, 
given various biases in current methods (for example, EEG and 
MEG signals reflecting dipoles), such that some unobserved 
confounders likely exist in these datasets. Yet even in the presence 
of unobserved confounders, taking observed confounders into 
account improves causal inferences. There are many FC measures 
that, unlike pairwise correlation and coherence, take confounding 
into account via fitting all measured time series simultaneously, 
such as partial correlation, multiple regression88, dynamic causal 
modeling39, multivariate Granger causality89, and Bayesian search 
approaches85. We focus here on the first of these.

Partial correlation is simply the Pearson correlation between 
a pair of time series calculated after the portion of their variance 
explained by all other observed time series is removed. A partial 
correlation coefficient thus reflects the degree to which two time 
series are correlated after accounting for potential confounders 
represented in the other time series. This improves causal 
inferences in the case of confounders (Box 2 Figure a) and chains 
(Box 2 Figure b).

However, partial correlation does not improve causal 
inferences in the case of colliders5,85 (Box 2 Figure c). This is due 
to the regressing-out step, which ends up introducing a negative 
correlation (in the case of positive relationships with a collider 
like in Box 2 Figure c) between independent time series. In the 
case illustrated in Box 2 Figure c, the orange and blue nodes’ time 
series are mixed into the green node’s time series due to causal 
influences (which define the green node as a collider). In this case, 
the regressing-out step erroneously makes two independent time 
series appear dependent. Note that if the orange node or blue node 
had been negatively related to the green node, then the regressing-
out step would have introduced a positive correlation between 
them. These effects are related to what is sometimes referred to as 
‘conditioning on a collider’90.

Perhaps surprisingly, one way to correct for the confounder 
case is to consider the result with pairwise correlation (combining 
FC methods as illustrated in Fig. 2a). While pairwise correlation 
provides the incorrect causal adjacency graph in most cases (Box 2 
Figure a,b), it provides the correct result in the collider case (Box 2 
Figure c). Thus, a simple approach to removing problematic partial 

correlation results is to remove connections that are not present 
with pairwise correlation but appear with partial correlation. As 
a further bonus, the resulting causal graph can be oriented with 
causal directionality (at least in a three-node case) because only 
a collider graph could have produced this pattern of results85,91,92.

Notably, this does not correct all possible problems with partial 
correlations in more complex graphs. For instance, consider a 
graph where two nodes without a direct connection between them 
are influenced by a confounder and also are themselves causes 
of a collider. In such a graph, combining partial correlation and 
pairwise correlation as described above will inevitably result in a 
false connection between the two nodes. However, in principle a 
set of existing methods can account for such cases. These Bayesian 
search approaches combine tests of causal independence (similarly 
to pairwise correlation) with tests for confounding (similarly 
to partial correlation) in a causal search framework to identify 
the causal graph most likely to have generated the observed 
data85. Among current algorithms, we recommend the following 
approaches available from the Center for Causal Discovery 
(http://www.ccd.pitt.edu) for making causal inferences taking into 
account both confounders and colliders: fGES, IMaGES2,93 (also 
available at https://cran.r-project.org/web/packages/IMaGES), 
Two-step94, and FASK94. Yet even these algorithms are not suited 
for all conditions, such that they (like all current methods) require 
further refinement through theoretical and empirical validation 
and method development (see section “Looking forward: the 
central role of FC method validation”).
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Box 2 Figure Switching from pairwise correlation to partial correlation 
improves causal inference (but is not perfect). Integrating inferences from 
both pairwise and partial correlation improves causal inferences in most 
cases, though some issues remain (see Box 2 text). a, Illustration of a 
confounder in a causal configuration. b, Illustration of a chain in a causal 
configuration. c, Illustration of a collider in a causal configuration. 
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method requires when making such a mapping. Accordingly, our 
proposed separation of FC properties into three distinct classes (tar-
get theoretical, methodological, and confounding) allows inferences 
about causal interactions to be made at various levels of ambiguity 
and uncertainty.

We take the position that all FC measures are useful provided 
they reduce the hypothesis space—the vast set of network con-
figurations that are possible among the theoretical target proper-
ties. Thus, rather than seeing ambiguities about target theoretical 
properties as evidence that a given FC measure is useless or flawed, 
we focus on what information it provides that helps us constrain 
neurocognitive theory. For instance, a consistent non-zero Pearson 
correlation between two regions’ fMRI time series increases the 
probability of a causal interaction existing between those regions, 
ambiguities about the direction and directness of the relationship 
notwithstanding (Fig. 2b,c). Notably, this strategy is analogous to 
another that was successfully employed when available evidence 
was typically ambiguous, in developing and validating the theory of 
evolution by natural selection43.

The proposed framework seeks to enumerate a common set of 
target theoretical FC properties, based on key properties of neu-
ral systems. These target theoretical properties are based on the 
standard model of neural interaction as described by Hodgkin 
and Huxley44 and elsewhere45,46. We assume that FC measures seek 
to infer some aspect of causal interaction among neural entities, 
mediated by action potentials via synaptic transmission. We there-
fore emphasize target theoretical properties that refer to aggregate 
action potentials and postsynaptic potentials, as well as the various 
means to alter the relationship between them (for example, syn-
aptic strengths, timing). Notably, several researchers have begun 
combining FC measures to constrain causal graphs of brain region 
interactions2,47,48, demonstrating that converging multimethod FC 

evidence can be used to constrain the hypothesis space (Box 2). A 
similar approach has also been developed to improve inferences 
about changes in Pearson correlation-based FC via combination 
with a simple covariance-based FC measure4.

Problem 3: the need to validate FC methods to improve map-
ping of FC results to properties of theoretical interest. Improved 
validation of FC methods would substantially increase our ability 
to make strong FC-related theoretical inferences. This reflects the 
core of the framework: clear mappings between FC method-driven 
observations and target theoretical inferences. Simulation-based 
and empirical validations serve to establish these mappings, which 
can then be generalized to make inferences in new, theoretically 
informative scenarios.

We expect the proposed framework to advance efforts to vali-
date FC methods in several ways. First, it clarifies what needs to be 
validated by explicitly stating the target theoretical properties that 
should be detected by a given FC method. Second, the framework 
makes it clear that confounding variables need to be accounted for 
before a given method can be considered ‘validated’, i.e., ready for 
use to make target inferences with empirical data. Finally, we flesh 
out the framework’s use of mappings between observation and theo-
retical targets to develop strategies for FC method validation.

Details of the FC mechanism framework
Step 1: identifying target theoretical properties. A mechanism 
refers to a causal chain of events, and thus for FC our target theo-
retical properties are, minimally, causal interactions between neural 
entities. Ideally, a causal interaction should be described as having 
directionality, directness, and weight. Directionality refers to the 
direction of information or activity flow; given neural entities A 
and B, it specifies whether activity passes from A to B, B to A, or in 
both directions. Directness refers to the number of relays required 
for activity to pass between A and B; in other words, whether it 
is a direct (monosynaptic) connection or an indirect (polysynap-
tic) one. Weight refers to the strength of the connection; in other 
words, how much the signal in A influences the signal in B, as well 
as whether it is excitatory or inhibitory. In practice, the majority of 
methods currently used to observe neural activity in humans lack 
sufficient temporal and/or spatial resolution or coverage to sup-
port a full causal description. Yet, they remain useful for supporting 
weaker causal inferences that might be ambiguous with respect to 
directionality, directness, or weight.

For FC approaches, we can define ‘neural entity’ as a spa-
tially contiguous region of neural tissue generating a signal  
(Box 1). This encompasses a range of possibilities: small anatomi-
cal entities, such as neurons or microcolumns, or larger parcels 
of neural tissue, whose boundaries are determined cytoarchi-
tectonically or otherwise9,49–51. Often, theoretical sources such as 
current dipoles52, units of a reference grid such as voxels, or the 
locations of EEG or intracranial electrodes are also treated as neu-
ral entities. To support inferences about biological mechanisms, 
however, each neural entity should describe how its time series 
integrates action potentials and/or postsynaptic potentials over 
time and space (Fig. 1).

Step 2: identifying methodological properties. It is crucial to be 
explicit about the methodology employed to obtain the evidence 
used to support target inferences. As outlined in Table 1, this 
includes several important properties inherent to any observational 
approach. The temporal and spatial resolutions of the sampling 
method constrain how interactions are inferred and how neural 
entities are defined, respectively. To assess temporal precedence, 
for instance, it is critical to have a sufficient sampling rate to deter-
mine the order in which neural entities are activated. Similarly, if 
the sampling rate is low compared to the connection latency, it can 

Method A
observation

Infer selectivity

Target theoretical 
properties 

(in hypothesis state space)

Ground-truth
condition 1

Ground-truth
condition 2

Ground-truth
condition 3

Methodological
properties

Confounding 
properties

(e.g., motion)

Sensitivity 
test 1

Sensitivity 
test 2

Sensitivity 
test 3

Fig. 3 | A systematic approach to validate mechanistic interpretations 
of FC measures. The basic illustration from Fig. 2 is modified with a 
procedure for validating FC methods. Three ground-truth conditions are 
indicated, each reflecting a scenario in which the experimenter can be 
highly confident about the state of the theoretical property (for the first 
two conditions) or confounding property (for the third condition) that 
is being manipulated. Each ground-truth condition is associated with a 
sensitivity test, wherein it is tested whether the FC method in question 
(method A) is sensitive to the manipulation. Once a large set of ground-
truth conditions and associated sensitivity tests has been carried out, one 
then infers the selectivity of the mapping from method A to theoretical and 
confounding properties. An FC method is valid for inferring a given set of 
theoretical properties of interest, in so far as the method is both sensitive 
to and selective for those theoretical properties. The selectivity to those 
theoretical properties implies that the method is not sensitive to plausible 
confounding properties (after applying any strategies used to reduce the 
influence of confounds).
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become difficult to determine the directness of observed interac-
tions. Spatial sampling is more critical for the definition of neural 
entities. This refers to both spatial coverage and spatial resolution; 
if sensors are too sparsely or too focally distributed there is a risk of 
failing to capture the complete set of neural entities (and potentially 
fall victim to confounding; Box 2).

Because the goal of FC approaches is to elucidate biological 
mechanisms, it is essential to specify how observations map onto 
their biological causes. This mapping can first be done abstractly, by 
defining the observational pathway through which neuronal activ-
ity (action potentials or postsynaptic potentials) maps via sequen-
tial levels to the sensors sampling their (typically aggregate) activity 
(Fig. 1). The observational pathway can then inform the observa-
tion equation1, which formally specifies how neural entity states 
generate the observed signal for a given modality. These equations 
can range from simple (for example, spatiotemporal averaging 
of local field potentials) to highly detailed (for example, layer-
resolved biophysical neural population models)53. They depend 
largely on the nature of the recording apparatus and represent an 
integration of existing theoretical knowledge and methodological 
assumptions about the signal generating process. The physical pro-
cesses involved in the blood-oxygenation-level-dependent (BOLD) 
signal54,55, for instance, are clearly distinct from those generating 
an extracellular local field potential recorded from an implanted 
electrode52. The observation equation should specify these details, 
ideally indicating aspects of the observational pathway that remain 
unknown or are ambiguous.

Finally, we focus on the importance of assumptions for describ-
ing and interpreting FC approaches and their results. We propose 
as a key aspect of this framework the enumeration of all critical 
assumptions required for an FC approach. Specifically, assump-
tions should be made explicit if they are judged to be (i) essential 
for interpreting a methodological result or inference, and/or (ii) 
uncertain or potentially contentious. Assumptions provide clear 
focal points for critical discussion and can be associated either with 
the analytical methodology or with the observation equation. For 
example, in fMRI-based FC studies it is typically assumed that the 
hemodynamic response function (describing neurovascular cou-
pling) is homogeneous across the brain or across individuals. The 
validity of these assumptions is a matter of ongoing debate in the 
field, however56–61, and it is therefore important to include them 
when describing an fMRI-based FC measure requiring them62. In 
general, distinguishing assumptions from the technical details of a 
given approach can greatly facilitate dialog addressing that approach 
and its findings, and failing to do so risks obscuring that dialog.

Step 3: identifying confounding properties. We also want to iden-
tify all uncontrolled factors that may confound our causal infer-
ences. Formally, a ‘confounder’ refers to any variable that influences 
two or more variables of interest, such that spurious associations 
arise24. For FC analysis, such confounders fall into one of several 
categories. First, confounders can be non-neural factors that intro-
duce correlated noise simultaneously into multiple neural entities. 
Examples include physiological artifacts, head motion, and envi-
ronmental noise. Second, violations of methodological assump-
tions can also result in confounds. Shared variance between neural 
entities, for instance, can arise from spatial smoothness induced by 
image reconstruction or as a result of source signal mixing in EEG 
and magnetoencephalography (MEG), which cannot be completely 
removed through current source localization approaches63. Finally, 
confounds can arise from observed or unobserved neural entities 
influencing two or more other neural entities (Box 2).

Having identified potential confounding properties, it is equally 
important to specify how they will be addressed. Ideally, this would 
be done by obviating potential confounds before data collection. 
Head motion might be minimized, for example, by means of a  

head-restraining apparatus. Confounding variables can alterna-
tively be accounted for by measuring them directly and removing 
their portion of the variance from the neural time series. Physical 
factors such as head motion or physiological artifacts are commonly 
addressed in this manner. In cases where confounding factors 
cannot be directly measured, they can also be isolated via signal-
decomposition approaches, such as independent component anal-
ysis, for which artifactual components can be identified and their 
variance removed64–68.

If a confound is not addressed via methodological properties, 
this should be reflected as an ambiguity in the target theoretical 
properties. This is critical, since the theoretical inference drawn 
from a given observation must both be supported by its method-
ological properties and properly address its confounding properties. 
This implies that, in the absence of effective control of confounds, 
we should modify our inferences to explicitly state the possibility 
that observed effects are due to confounding.

Looking forward: the central role of FC method validation
Valid mappings from FC observations to theoretical properties of 
interest are critical for gaining mechanistic insights. In this section 
we provide a systematic approach to validate FC methods (Fig. 3). 
Validating mechanistic interpretations of an FC measure involves 
(i) identifying a series of ground-truth theoretical and confounding 
conditions, using either simulation or empirical experiments, and 
(ii) testing the FC measure for sensitivity to the ground-truth condi-
tions. This can be considered as a series of ‘forward mappings’ from 
theoretical and confounding properties to FC observations. For 
example, if a manipulation of the theoretical properties in a particu-
lar network configuration can be detected by an FC method, it can 
be said to be sensitive to that manipulation. Identification of many 
such forward mappings allows us to quantify our confidence that 
the method can capture a given property; in other words, it allows 
us to infer (iii) the selectivity of the FC measure for those properties 
(a ‘backward mapping’). This is the mapping of interest for future 
studies: from FC observation to target theoretical properties.

It is critical that the set of sensitivity tests include both plausible 
confounding properties and target theoretical properties of interest. 
Without sensitivity testing of confounding properties—along with 
strategies to minimize or eliminate confounds if sensitivity to them 
is established—there can be only minimal confidence in the validity 
of mechanistic interpretations of FC observations. In turn, without 
sensitivity testing of theoretical properties of interest there can be no 
valid basis for inferring causal mechanisms from FC observations.

As a simple example of using this validation framework, con-
sider testing of Pearson correlation in a neural mass simulation of 
fMRI data. Spiking in neural entity A directly and bidirectionally 
connected to neural entity B causes a non-zero Pearson correlation 
in the simulated fMRI signal (sensitivity test 1). However, spiking 
in neural population B also causes non-zero Pearson correlation 
(sensitivity test 2). From these two tests, we infer the selectivity of 
the mapping from FC observation to target theoretical properties: 
that observing an fMRI Pearson correlation only allows us to infer 
that an interaction likely occurred between A and B with ambiguous 
directionality. In practice, more sensitivity tests should be included 
to test for confounding properties and interactions with additional 
neural entities.

There are a wide variety of strategies that can be used for sensitiv-
ity tests during FC method validation, each with strengths and weak-
nesses. The basic validation strategies we focus on here are detailed 
simulations, abstract simulations, and empirical validations.

Relative to empirical studies, detailed simulations have the 
advantage that a large number of sensitivity tests can be conducted 
across the space of possible ground-truth conditions. On the other 
hand, these simulations typically require many more assumptions. 
This reflects the complexity of the nervous system; both because our 
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knowledge is imperfect and for computational tractability, we must 
make approximations. This is true even of detailed neuron-level 
simulation studies45,46,69,70, for which numerous assumptions are 
typically necessary to fill gaps in current knowledge and produce 
plausible neural interactions. One way to overcome this limitation 
is to vary model parameters over a range of plausible values (for 
example, action potential conduction delays of 10–100 ms in 1 ms 
increments) to ensure the FC method remains valid over this range. 
Another approach is to focus a model’s detail on properties that are 
most relevant to the method being validated. For example, model-
ing individual ion channels may be useful for validating a calcium 
imaging-based approach, but not for an EEG-based approach.

An alternative validation strategy is abstract simulations, for 
which parameters are reduced to abstract or simplified equiva-
lents30,71–74. For instance, rather than modeling every neuron in an 
entity, one can simulate a ‘neural mass’ that generates averaged neu-
ronal activity. This can have multiple advantages. First, it is easier to 
intuitively understand abstract models than detailed ones. Second, 
abstract simulations are much more computationally efficient, 
which is especially important for large-scale simulations and sen-
sitivity tests across a wide range of ground-truth conditions. Third, 
an abstract simulation can be equivalent to generalizing over many 
parameters in a detailed simulation, increasing confidence in the 
generalizability of the validation results. Despite these advantages, 
a substantial limitation of abstract simulations is the possibility 
that an omitted detail would change the outcome of the simulation, 
resulting in inaccurate sensitivity tests. This could be the case, for 
instance, if an abstract model were to assume a single large conduc-
tion delay between neural units when a given FC method is actually 
not sensitive to small but realistic conduction delays.

The best strategy to minimize assumptions is to use empirical 
validation. The absolute ideal would be to know the ground truth 
in the system of interest (for example, the human brain) for the 
context about which you want to make FC inferences. In practice, 
however, empirical validation involves the limited set of scenarios 
in which we can establish (or strongly expect) the ground truth and 
test the sensitivity of an FC method to that ground truth31,75,76. The 
validations in such limited scenarios are then expected to general-
ize to other scenarios of interest in which ground truth is unknown. 
As an example, a recent study used the established ‘memory reac-
tivation’ effect, in which the portion of sensory cortex representing 
a sensory experience is reactivated along with that memory77, to 
establish a ground-truth reversal of directed FC between visual and 
auditory cortices in humans31. This resulted in evidence that a vari-
ety of fMRI and MEG FC measures are sensitive to the direction 
of interaction among cortical regions31. This validation involved 
only minimal assumptions relative to simulation-based validation, 
yet unlike simulations it was limited to only a pair of experimental 
conditions (involving two brain regions). Other empirical valida-
tions of FC measures have involved animal models74,78–81, allow-
ing for more extensive ground-truth manipulations, but these are 
limited by the untested assumption that findings generalize to the 
human brain.

There have been multiple successful empirical tests for con-
founding properties. For instance, several strategies have been pro-
posed to establish the empirical ground truth of head movement 
as a confound for Pearson correlation-based FC with fMRI13–15. 
One such strategy, the comparison of high-motion vs. low-motion 
subjects, has revealed extensive brain-wide differences in FC esti-
mates82. Various strategies have likewise been proposed to address 
this motion confound. While linear regression was unable to fully 
address motion effects82, other approaches, such as removing high-
movement time points from time series, have been effective in 
making FC estimates more similar between high- and low-motion 
subjects83. Simulation-based validation can also be applied to 
establish confounding properties and strategies to correct them4,84, 

although in such cases it is important to also establish relevance by 
demonstrating the existence of the confound in empirical data.

Ultimately, it is clear that FC method validation requires con-
vergent evidence across several of these validation strategies. 
Simulations can provide a broad search over many sensitivity tests 
to help determine what theoretical FC properties a given FC mea-
sure is selective for. Yet model assumptions are always required, 
reducing confidence that they will generalize to empirical data, 
especially given the possibility that non-simulated confounding 
properties are present. Therefore, empirical validation is important 
to ensure that, at least in the cases where some ground truth can be 
reasonably established, the sensitivity and selectivity of a given FC 
measure is indeed sufficient to support mechanistic interpretation 
of FC observations.

Conclusions
The mechanistic FC framework developed here makes clear how 
many hurdles still need to be overcome to achieve full mechanistic 
accounts of neural network processes. Simultaneously, the frame-
work reveals what progress we have made despite ambiguities in 
interpreting existing FC measures. We hope this framework cata-
lyzes work toward improved interpretation of existing FC measures 
and development of FC measures (and recording techniques) that 
provide for more comprehensive and unambiguous inferences 
about brain network mechanisms of theoretical interest.
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