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Abstract
Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when
performingnovel tasks.However, it remains to be establishedwhether LPFC representation of task-relevant information in such
situations actually contributes to successful performance.We utilized pattern classification analyses of functional MRI activity
to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of
which were novel. In three of these novelty-sensitive regions—located within distinct areas of left anterior LPFC—trial-evoked
activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-
relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly
important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel
task situations.
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Introduction
Decades of neuroscientific research has established that human
lateral prefrontal cortex (LPFC) is more activewhen a high degree
of cognitive flexibility is required, such as during novel task
learning (Cole, Laurent, et al. 2013), decision making (Mcguire
and Botvinick 2010), and rapid task-switching (Braver et al.
2003; Ruge et al. 2013). Further, more recent work has utilized ad-
vances in neuroimaging pattern classificationmethods (Norman
et al. 2006) to establish that LPFC activity patterns contain infor-
mation regarding the currently relevant task-set (Cole et al. 2011;
Woolgar et al. 2011; Zhang et al. 2013; Waskom et al. 2014). More-
over, Cole et al. (2011) demonstrated that PFC activity patterns re-
present task relevant rule information not only during practiced
task performance, but also when performing tasks with novel
rule combinations. However, it remains unclear whether such
task representations—and LPFC representations generally—ac-
tually contribute to behavioral performance (but see Etzel et al.

(2015) for a recent example of this type of finding). The present
study sought to determine whether flexible representations
within LPFC are behaviorally relevant, particularly during novel
task performance, for which cognitive flexibility is most critical.
Such a link between LPFC activity patterns and task performance
would suggest that a critical means by which LPFC contributes to
successful cognitive flexibility is through task rule representa-
tion, particularly in novel circumstances.

A recent study found that most aspects of a complex task
could be decoded from LPFC in nonhuman primates (Rigotti
et al. 2013). They found that the ability to decode task informa-
tion was diminished during error trials, indicating a collapse in
task “dimensionality”within LPFC. In light of this finding,weper-
formed decoding of multiple dimensions of complex cognitive
tasks, testing decoding of task rules on correct versus error trials.
Importantly, our paradigm required extraordinary behavioral
flexibility—most trials involved learning to perform tasks that
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involved the novel integration ofmultiple rules. Thus, identifying
behavior-sensitive activity patterns within LPFC would expand
upon previous work to show that representations within
human LPFC contribute to successful behavioral flexibility in
the complex cognitive task scenarios indicative of human
cognition.

Our primary approach was to utilize a previously developed
cognitive paradigm that requires rapid instructed task learning
(RITL) (Cole et al. 2010). A key feature of this paradigm is that it
involves a large set of distinct tasks (64) each composed of 3 in-
tegrated rules (Fig. 1). In prior work, we demonstrated success-
ful decoding of multiple task rule representations within LPFC
(Cole et al. 2011). In the current study, we limited preparation
time to induce errors. This allowed us to obtain enough error
trials per subject to observe relationships between brain activ-
ity and task performance. We hypothesized that portions of
LPFC’s primary functional network—the cognitive control net-
work (Cole and Schneider 2007; Duncan 2010)—would involve
four properties indicative of important contributions to flexible
cognitive control: 1) sensitivity to task novelty (novel vs. prac-
ticed tasks), 2) sensitivity to task performance (correct vs.
error trials); 3) representation of decision rules (rule-specific
activity patterns); and 4) a collapse of task rule representation
on error trials (suggesting dimensionality reduction). Together
these properties would strongly support a key role for LPFC
(and possibly its distributed network) in producing flexible
behavior.

Materials and Methods
Participants

Participants were recruited from Washington University in St
Louis and the surrounding area. During screening, potential par-
ticipants were excluded if they had any medical, neurological or
psychiatric illness, any contraindications for MRI scans, were
non-native English speakers, or were left-handed. Additionally,
participants were excluded from further analysis due to poor
data yield during scanning, either for technical reasons or
below-criteria task performance (below 70% accuracy during
the practice session, or below 60% accuracy on practiced tasks
during the test session). Five scanned participants were excluded
in this manner, one due to ending the fMRI session early and the
others due to low performance accuracy (<60%) on practiced
tasks. This left 21 participants (9 females), aged 18–32 years
(mean age = 22.7 years) included in the analysis. All participants
gave informed written consent prior to study participation.

MRI Data Collection

Image acquisitionwas performed on a 3T Siemens TrioMRI scan-
ner. 36 transaxial slices were acquired every 2000 ms (field
of view = 256 mm, echo time = 25 ms, flip angle = 90°, voxel
dimensions = 4.0 mm3) with a total of 258 gradient echo-planar
imaging volumes collected per run (across 10 runs). Three-di-
mensional anatomical magnetization prepared rapid acquisition

Figure 1. Cognitive task paradigm. The permuted rule operations (PRO) paradigmwas used to test highly flexible cognitive control. Four tasks were practiced in a previous
session, while 60 tasks were novel during the neuroimaging session. Preparation time was shortened from previous versions of the paradigm in order to induce enough
errors to identify brain representations contingent upon behavioral performance. The paradigm was used to isolate 3 forms of flexible cognitive control: 1) novel versus
practiced task performance, 2) correct versus error behavioral performance, and 3) decision rule identity (SAME, DIFFERENT, SECOND, or NOTSECOND rules).
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gradient echo images and T2 structural in-plane images were col-
lected for each subject before fMRI data collection.

Task Paradigm

The permuted rule operations (PRO) cognitive paradigmwas used
(Fig. 1), as described previously (Cole et al. 2010, 2011; Cole,
Reynolds, et al. 2013). Briefly, 12 task rules of three types (logical
decision, sensory semantic, andmotor response) were combined
into 64 distinct combinations, producing 64 unique tasks
(i.e., instruction sets). Tasks were defined as unique combina-
tions of rules, such that the same stimuli would require a distinct
set of cognitive operations for correct performance across distinct
tasks. Four of these 64 tasks (counterbalanced across subjects)
were practiced in a prior 2-h behavioral session (outside the scan-
ner), with the remaining tasks presented for the first time during
the test (fMRI) session.

As described previously (Cole et al. 2010), the semantic rules
consisted of sensory semantic decisions (e.g., “is it sweet?”).
The logical decision rules specified how to respond based on
the two semantic decision outcomes for each trial. Themotor re-
sponse rules specified which button to press based on the logical
decision outcome. The task instructions made explicit reference
to the motor response for a “true” outcome, while participants
knew (from the practice session) to use the other finger on the
same hand for a “false” outcome. Stimuli and motor responses
were counterbalanced overall and with respect to all rules to re-
duce the chance of biased responding.

Unlike previous versions of this paradigm, two key changes
were made for the current study: 1) the task rules relevant for
the current trial were only available for a short period before
the trial began (1900 ms vs. the previous 5–9 s), thus limiting en-
coding and preparation time; and 2) only one trial was presented
for a given task, thus increasing the frequency of task-switching.
Additionally, the rule that was previously cued as “JUST ONE”
was now referred to as “DIFFERENT” to ease comprehension.

Each subject completed 10 runs comprised 36 trials each dur-
ing the imaging session, totaling 360 trials per session. Of the 360
trials per session, 240 trials were considered novel tasks (i.e.,
tasks that were encountered for the first time during the imaging
session, and repeated no more than 4 times throughout the ses-
sion), and 120 trials were considered practiced tasks (i.e., the 4
tasks that were practiced in a prior 2-h behavioral session; en-
countered 30 times each in the fMRI session). Within each trial,
the timing was as follows: 1000-ms instruction presentation,
900-ms delay (between instruction and trial stimuli), 1500-ms
trial stimulus presentation, followed by a variable intertrial
delay (6.6–14.6 s).

Preprocessing

Preprocessing was performed using AFNI (version 2011-12-21)
(Cox 1996). Images were slice-time corrected, motion-corrected
(realigned), detrended by run, aligned to a Talairach template
image, and temporally compressed using general linear model
(GLM) estimates—fitting a canonical hemodynamic response
function to each of the 360 trials separately.

We used PyMVPA (version 0.6) for classification analyses
(Hanke et al. 2009). We averaged the data across trials within
each run (by task condition), such that there were 10 data points
per condition per subject (one per run). Note that this was true re-
gardless of the particular condition of interest (e.g., correct trials,
SAME rule trials, incorrect DIFFERENT rule trials). There were
some exceptions where certain subjects performed entire runs

without any errors, resulting in fewer than 10 data points for a
particular error-trial condition. In such cases, we used a standard
balancing algorithm that equalized the number of samples be-
tween conditions to be included in the classification process.
This ensured that the classifier would not be biased toward clas-
sifying a particular condition due to an unequal number of sam-
ples per condition. As part of the data normalization process
prior to classification, we z-normalized each voxel, subtracting
the across-sample mean and dividing by the across-sample
standard deviation. Note that results were highly similar with
and without regressing out trial-to-trial reaction times, an ap-
proach suggested to deal with potential task difficulty confounds
(Todd et al. 2013; Woolgar et al. 2014).

Searchlight-Based Classification Analysis

We defined and analyzed regions of interest (ROIs) using a two-
stage approach, in which voxel clusters identified by the search-
light analysis were subsequently re-trained and analyzed as
independent ROIs (Etzel et al. 2013).

To define the ROIs, we used PyMVPA’s (Hanke et al. 2009)
searchlight algorithm, which employs linear support vector ma-
chines to classify fMRI activity patterns in the whole brain using
two-voxel radius “searchlight spheres” surrounding each voxel
(corresponding to a 33-voxel cluster per searchlight). Searchlights
were restricted to a whole-brain gray matter mask that was di-
lated by one voxel. A novel versus practiced classification was
performed, where novel and practiced conditions were collapsed
across correct and incorrect behavioral performance trials.

We spatially smoothed each subject’s statisticalmap using an
iterative algorithm (AFNI’s 3dBlurToMask) that ensured the final
empirical smoothness was 6-mm FWHM. Note that each sub-
ject’s statistical map was estimated (using AFNI’s 3dFWHMx) to
be at or below 6-mm FWHM prior to smoothing. We then com-
pared each voxel’s accuracy to chance (50%) using one-way
one-sample t-tests. The groupmap was then cluster thresholded
to correct for multiple comparisons. The cluster size was esti-
mated using AFNI’s 3dClustSim with 10 000 Monte Carlo simula-
tions using P < 0.01 as the uncorrected threshold and a smoothing
parameter of 6-mm FWHM. For a corrected P < 0.05, the cluster
size was calculated to be 34.1 voxels.

ROI-Based Classification Analyses

We performed three basic classifications with the ROIs: 1) two-
way classification of novel and practiced task conditions; 2)
two-way classification of Correct and Incorrect task conditions;
3) four-way classification of logical decision rules.

The ROI-based classifications were carried out with support
vector machines using a linear kernel with the cost parameter
scaled to the norm of the data (i.e., the norm of the inputmatrix),
as is standard in PyMVPA. We obtained group accuracies by clas-
sifying each subject’s data separately and subsequently aver-
aging the classification rates across subjects. We employed a
leave-one-run-out cross-validation scheme to avoid circularity
in the classifications. For each cross-validation, we excluded all
samples from a single run across all conditions, trained using
data from the remaining runs, and finally tested the classifier
on the samples from the excluded run. The 4-way rule-based
classification was performed in the same manner, but with four
samples (one per decision rule) per run.We ensured that each re-
gion’s across-subject accuracy distribution was approximately
normally distributed prior to running t-tests. Further, we reran
all t-tests after arcsine transforms (a common method to make
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accuracy data more normally distributed), obtaining highly simi-
lar results as before. For each analysis, we corrected for multiple
comparisons on the 8 searchlight-defined ROIs using false dis-
covery rate (FDR) (Genovese et al. 2002).

Permutation Testing

We attempted to increase the number of error trials from previ-
ous implementations of the PROparadigm,while simultaneously
ensuring that participants were performing with above chance
accuracy. It was therefore necessarily the case that all subjects
produced more correct than error trials, which added additional
complexity to the logical decision rule correct versus error classi-
fication analysis. In particular, we needed away to ensure classi-
fication was not biased toward greater accuracy for correct trials
simply due to the greater number of correct trials for classifier
training.We used permutation testing to produce unbiased P-va-
lues, based on null distributions produced with the same degree
of bias as the real classification results. In otherwords, since both
the accuracies produced by the permutation test and the true
classification test had the same ratio of correct to error trials,
evaluating the true classification rate relative to the null distribu-
tion produced an unbiased P-value, regardless of the different
frequencies of correct and error trials.

Using PyMVPA’s AttributePermutatorwith 10 000Monte Carlo
simulations, we created 2 null distributions (correct and error) for
each of the classification types by permuting the rule encodings
across all data samples within either condition. After construct-
ing the null distributions for correct and error conditions separ-
ately, we then subtracted the error null distribution from the
correct null distribution to create a new null distribution of cor-
rect versus error condition differences. Each value in one distri-
bution was randomly paired with another value in the other
distribution for subtraction. To test the significance between
the true accuracies of correct and error conditions relative to
the null distribution, we computed the difference of the correct
and error trials separately using the original (nonpermuted)
data labels. By comparing the nonpermuted correct versus error
differences relative to the differences of the 2 null distributions,
wewere able to determine if therewas a significant difference be-
tween the correct and error accuracies. Since our permutation ap-
proach was not standard, we also conducted a version of this
analysis closer to standard classification approaches to deter-
mine if it mattered in practicewhich approachwas used. This in-
volved randomly sampling categories with replacement,
ensuring an equal number of samples across classes during
training and testing. Each class was sampled 1000 times—this
high number was necessary to achieve a stable solution over
multiple runs of the analysis.

Results
Behavioral Performance

Participants performed the PRO cognitive paradigm (Fig. 1),
which involved 2 sessions. Participants were 85% accurate on
average during the (behavior-only) practice session, in which
they learned and performed four of the 64 tasks repeatedly.
During the neuroimaging session the average accuracy rate
was 81%, which reflected the intermixed performance of the 4
practiced tasks and 60 additional novel tasks. Looking at the 2
task types separately, practiced task accuracywas 83% (t(20) = 18.0,
P < 0.00001), and novel task accuracy was 80% (t(20) = 19.0,
P < 0.00001). The performance difference between the 2 task

types was significant (t(20) = 2.2, P = 0.04). Note that this was not
due to a speed-accuracy trade off, as error trials were slower
than correct trials (correct mean RT: 953 ms, error mean RT:
1051 ms, t(20) = 11.0, P < 0.00001). (These results were similar
when computed separately for novel and practiced trial types.
Novel trials = correct mean RT: 962 ms, error mean RT: 1051 ms,
t(20) = 8.8, P < 0.00001. Practiced trials = correct mean RT: 936 ms,
errormeanRT: 1058 ms, t(20) = 8.1,P < 0.00001.) This result indicates
the increased difficulty associated with performing novel tasks.
On the other hand, performance of both task types was relatively
high and the difference between them was relatively small, indi-
cating that participants were able to achieve successful task per-
formance even on novel tasks. However, we achieved a key goal
of our modifications of the paradigm—introducing a substantial
number of performance errors relative to our prior work (for
which accuracy was over 90% for both novel and practiced tasks;
Cole et al. (2010)). This was likely due to the reduction in encoding
and preparation time (from 5–9 s to 1900 ms) and using a trial-by-
trial task switching design (which may have also increased the
relative difficulty of practiced task performance).

Localizing Flexible Cognitive Processing: Novel Versus
Practiced Tasks

Our first goal was to functionally localize brain regions potential-
ly contributing to cognitive flexibility. In particular, we tested for
regions sensitive to novel versus practiced task performance,
given that RITL requires especially flexible cognition. Thus, we
identified brain regions with differential fMRI activity across
novel and practiced tasks. It is possible to identify regions in
this manner using either traditional univariate GLM analyses,
or multivariate pattern classification approaches (Etzel et al.
2013). In prior work with this same paradigm (Cole et al. 2010),
a univariate approach was used that identified novelty-sensitive
activity in 2 portions of prefrontal cortex: right dorsolateral pre-
frontal cortex (DLPFC) and left anterior prefrontal cortex (aPFC).
However, in that study, we capitalized on the slower timing
that separated task instructional cues and task trials to reveal
these regions in terms of their distinct activity dynamic signa-
tures. In the current study, because these 2 trial phases were in
closer temporal proximity (to increase error rates and total trial
numbers), we expected that the multivariate analysis approach
would have greater sensitivity to detect novelty-related effects.

Indeed, this was the case. Using ROIs in the same locations as
the previous study (the spherical regions in Fig. 2; each with a ra-
dius of 9 mm), we found no difference in mean activation ampli-
tude between novel and practiced trials for either PFC region
(treated as a univariate GLM analysis; aPFCmean beta difference:
−0.13, t(20) =−0.88, P = 0.4; DLPFCmean beta difference:−0.06, t(20)
= −0.60, P = 0.56). Moreover, a standard whole-brain univariate
GLM analysis failed to identify any regions that reliably differen-
tiated novel andpracticed tasks after correcting formultiple com-
parisons (P < 0.05, family-wise error corrected for multiple
comparisons). In contrast, a multivariate pattern analysis of the
2 a priori PFC ROIs did show successful classification of novel ver-
sus practiced task trials, although the effect was only marginally
significant in the aPFC (53%, t(20) = 1.48, P = 0.08; DLFPC: 56%, t(20)-
= 2.85, P = 0.005). Likewise, a whole-brain searchlight analysis
identified an additional 8 ROIs (Table 1) that correspond with
many portions of LPFC and its extended functional network,
the cognitive control network (Cole and Schneider 2007; Duncan
2010). We conducted subsequent analyses using ROI-based clas-
sification with these 8 ROIs, as well as the 2 ROIs described above
from the previous study (Fig. 2).
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Testing for Task Rule Representations in Novelty-
Sensitive Brain Regions

Consistent with regions that likely contribute critically to flexible
cognitive control, we previously found that some LPFC regions re-
present specific task rules (Cole et al. 2011).Wenext sought to test
if the novelty-sensitive regions we identified above also code for
task rules. We again used multivariate pattern analysis, this
time decoding logical decision rules in the 10 ROIs (4-way classi-
fication, chance = 25%). We found that activity patterns in the
(Cole et al. 2010) left aPFC region coded for logical decision rules
(accuracy = 30%, t(20) = 2.25, P = 0.02). This was not the case for the
Cole2010 right DLPFC region (accuracy = 28%, t(20) = 0.96,
P = 0.2, NS), though that region appeared to code for sensory se-
mantic rules (accuracy = 28%, t(20) = 2.38, P = 0.01). Looking across
the other 8 ROIs, only regions within left anterior LPFC coded for

logical decision rules (ROIs 4 and 8; see Table 2). This suggests re-
gions within left anterior LPFC code task-relevant information.

Behavioral Relevance of Representations in Novelty-
Sensitive Brain Regions

We next tested whether the novelty sensitive regions might con-
tribute to successful task performance. This property would be
expected of a region that contributes critically to flexible behav-
ior.Webegan by testingwhether anyof these regions showeddif-
ferential activity patterns on correct and error trials, under the
assumption that if task representations in these regions contrib-
uted to performance they should track performance differences.
We used permutation tests for this analysis, due to the larger
number of correct than error trials (see Materials and Methods).

1
2
3
4
5

6
7
8

10
9

ROI numbers

Figure 2. Regions of interest (ROIs). Regions defined based on are spherical (ROIs 1 and 2). The other regions/clusters were defined using a searchlight voxel activation
pattern analysis decoding novel versus practiced tasks (P < 0.05, family-wise error corrected for multiple comparisons).

Table 1 Regions of interest (ROIs) with their corresponding cluster sizes and Talairach coordinates, which reflect the center of mass of each ROI

ROI Name Area Size (voxels) Talairach coordinates

1 Anterior lateral prefrontal cortex 10 99 22, −48, 19
2 Dorsolateral prefrontal cortex 9 111 30, 27, 35
3 Pre/supplementary motor areas 6 437 −28, 7, 49
4 Anterior lateral prefrontal cortex 10 73 −38, 50, 6
5 Posterior middle temporal cortex 20 63 −57, −40, −11
6 Lateral orbitofrontal cortex 11/47 58 33, 40, −6
7 Dorsolateral prefrontal cortex 8 45 21, 34, 37
8 Anterior lateral prefrontal cortex 45 41 −50, 30, 5
9 Superior prefrontal cortex 8 39 −27, 33, 44
10 Superior prefrontal cortex 6 35 43, 14, 48

*FDR corrected for multiple comparisons.
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We found that activity in all of the 10 ROIs, both the a priori ones
and the searchlight-identified ones, were sensitive to whether
trial performance was accurate or associated with an error (P <
0.05, FDR corrected for multiple comparisons). This was true for
novel tasks (Fig. 3A), and also true for practiced tasks, though
one of the ROIs was only marginally significant in this analysis
(Fig. 3B; see also Table 2).

Testing for Behaviorally Relevant Decision Rule
Representations: Possible Collapsing of Task Rule
Representations During Error Trials

The above results suggest that left anterior LPFC regions 1) are
sensitive to novelty, 2) represent task information, and 3) are sen-
sitive to task accuracy—consistent with regions important for
flexible cognitive control. We tested this more directly—while
also testing for the possibility of a collapse in representational
quality during error relative to correct trials (Rigotti et al. 2013)
—by decoding rule representations separately for correct and
error trials. We found that all three of the anterior LPFC ROIs
could decode logical decision rules for correct trials (ROI 1: 30%,
P = 0.02, ROI 4: 30% P = 0.02, ROI 8: 31% P = 0.02) but not for error
trials (ROI 1: 24% P = 0.36, ROI 4: 25% P = 0.48, ROI 8: 26% P = 0.41).
Critically, these classification accuracies were significantly great-
er for correct versus error trials (P < 0.05) for all of these ROIs
(Fig. 4). [A secondary permutation approach that oversampled
error trials (see Materials and Methods) produced results that
were quite similar to the other approach, with 2 of the 3 left an-
terior LPFC regions being highly statistically significant. Specific-
ally, ROI 1was P = 0.007, ROI 4was P = 0.14, and ROI 8was P = 0.001.
Undersampling of correct trials to match the number of error
samples (rather than oversampling error trials tomatch thenum-
ber of correct samples) produced similar though only marginally
significant results: ROI 1 P = 0.05, ROI 4 P = 0.13, ROI 8 = 0.06. The
reduction in statistical significance is likely due to throwing out
a substantial portion of the (correct trial) data.]

This indicates that representational quality was likely better
for correct performance trials, suggesting that rule representa-
tions in these regions contributed to behavior. In turn, this
suggests the functional importance of left anterior LPFC repre-
sentations to flexible cognition, as they showed all 4 signatures
of interest (Table 2).

Testing the Unity of the Anterior LPFC Regions

The apparent functional similarity and spatial proximity of the
three left anterior LPFC regions suggested they might be one
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Figure 3. Activity classifications for correct versus error task performance.
Accuracies for pattern classifications in each ROI for novel (A) and practiced (B)
tasks are shown. P-values for the exploratory ROIs (the last 8 ROIs) were
corrected for multiple comparisons using false discovery rate. Error bars
indicate inter-subject standard errors.

Table 2 ROIs 2 through 10 are family-wise error corrected for multiple
comparisons

ROI Novel correct
versus
practiced
correct

Correct logic
rule
classification

Novel
correct
versus novel
error

Practiced
correct versus
practiced
error

1 P = 0.08 P = 0.02 P < 0.0001 P = 0.004
2 P = 0.005 P = 0.17 P = 0.008 P = 0.002
3 P = 0.0002 P = 0.08 P < 0.0001 P = 0.0003
4 P = 0.02 P = 0.02 P < 0.0001 P = 0.0003
5 P = 0.04 P = 0.23 P = 0.02 P = 0.0005
6 P = 0.001 P = 0.14 P = 0.01 P = 0.02
7 P = 0.02 P = 0.17 P = 0.02 P = 0.0003
8 P = 0.05 P = 0.02 P = 0.03 P = 0.08
9 P = 0.05 P = 0.19 P = 0.02 P = 0.01
10 P = 0.008 P = 0.19 P = 0.01 P = 0.01

Values in bold indicate P ≤ 0.05. Values in italic indicate P-values where
0.05 < P < 0.10.
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large unified brain region. We tested this by considering that dis-
tinct functional brain regions have distinct whole-brain brain
connectivity patterns (Cohen et al. 2008). Specifically, we as-
sessed the similarity of functional connectivity patterns among
the 3 regions based on the results from 2 previous resting-state
functional connectivity fMRI studies (Power et al. 2011; Yeo
et al. 2011). Importantly, recent results indicate that the network
organization identified during resting state is also present across
a wide variety of tasks (Cole, Bassett, et al. 2014), suggesting con-
nectivity pattern inferences based on resting-state functional
connectivity generalize to tasks.

We found that all 3 left anterior LPFC regions were in separate
subnetworks in both brain network partitions (Fig. 5). Note that
both studies used distinct network partition approaches. Power
et al. (2011) used graph theoretical community detection, while
Yeo et al. (2011) used a recently developed clustering algorithm
that models data with a von Mises-Fisher distribution. Despite
these differences, both approaches produced similar network
partitions, both of which indicate the 3 left anterior LPFC regions
identified here are in separate subnetworks. Focusing on the la-
bels assigned by Power et al. (2011), ROI 1 is in the “salience” net-
work, ROI 4 is in the “frontoparietal” network, and ROI 8 is in the
“ventral attention” network. All 3 networks are considered to be
control-related or “task positive” in nature (Power et al. 2011).

Discussion
We found that 3 regions in left anterior LPFC (see ROIs 1, 4, and 8
in Fig. 2) met all of our criteria for behaviorally relevant task set
representation.Webegan by looking at 2 ROIs fromaprevious (re-
gional activation amplitude) study (Cole et al. 2010) using the
same cognitive paradigm.We found that activity patterns within
the left anterior LPFC region could distinguish novel from prac-
ticed tasks, correct from error trials, and logical decision rules
from one another. Importantly, logical decision rule classifica-
tionwas significantly higher for correct than error trials, suggest-
ing these representations were behaviorally relevant. Among 8
additional ROIs, only 2 regions (also in left anterior LPFC, but
clearly distinct from the first ROI) showed this same pattern of re-
sults. Together these results suggest representations across 3 dis-
tinct portions of left anterior LPFC contribute to adaptive
cognition and the behavior it produces.

The cognitive paradigm used in this studywas designed to in-
vestigate RITL—the ability to learn and perform tasks on the first
try. RITL is one of the most highly adaptive forms of cognitive
flexibility and cognitive control (Cole, Laurent et al. 2013), sug-
gesting brain regions that contribute to RITL likely facilitate cog-
nitive flexibility in a variety of contexts. In this paradigm, novel
tasks were new to participants, while practiced tasks were per-
formed repeatedly in a prior session. All aspects were controlled
for across novel and practiced tasks except for task novelty (e.g.,
stimulus features, previous practice with each task rule). We
found that activity patterns in both Cole et al. (2010) regions dis-
tinguished between novel and practiced tasks, suggesting fine
spatial patterns in these regions contribute to producing RITL.
Further, we found an additional 8 regions that distinguished
novel and practiced tasks, many of which overlapped with a
well-established brain system (consisting of multiple subnet-
works) called the cognitive control network (Cole and Schneider
2007; Vincent et al. 2008). These results strongly suggest that the
cognitive control network—especially its portions in LPFC—con-
tribute to RITL. This is largely consistentwith previous RITL stud-
ies, which primarily used regional activation amplitudes and
separated instruction from task execution periods (Cole et al.
2010; Stocco et al. 2012).

The present results are also consistent with previous studies
of task rule representation (Reverberi et al. 2012), which also
found rule representationswithin LPFC alongwith other portions
of the control network. The present study built upon previous
findings to test for sensitivity of these rule representations to
task performance. In particular, we hypothesized that task
rules would be better represented in brain regions during correct
than error trials, consistent with those rule representations con-
tributing to behavioral performance. Such a finding would be
consistent with recent results in nonhuman primate LPFC (Rigot-
ti et al. 2013), but this time in the context of multiple complex
tasks and highly abstract rules in humans. Three portions of
left anterior LPFC showed the expected rule representations con-
tingent on task performance, suggesting these brain regions are
especially important for adaptive cognition and behavior.

Humans can perform RITL (and related abilities) while other
animals cannot. It has been speculated that this uniquely
human ability may be due to extensive expansion of anterior
LPFC in human evolution (Cole 2009; Cole, Laurent, et al. 2013).
Highly relevant to this evolutionary argument, a recent study dir-
ectly compared the connectivity patterns of LPFC regions between
humans andmacaquemonkeys (Neubert et al. 2014). They found
very high correspondence among all regions of LPFC except for
the most anterior portion of LPFC. Consistent with this, we
found that the most anterior portions of LPFC were the most im-
portant for adaptive cognitive control, including RITL.

The 3 aspects of cognitive flexibility that we tested for were
incompatible in some ways. For instance, a region that is in-
volved only during novel tasks might not distinguish correct
versus error trials (or decision rules) during practiced tasks.
Our finding of all 3 aspects in anterior LPFC regions suggests dis-
tinct activation patterns within these regions encode for differ-
ent aspects of cognitive control. Future research may be able to
test whether distinct subpopulations of neurons encode these
different aspects of cognitive flexibility, or whether there is
overlap in the populations but orthogonal activation patterns
to reduce interference.

We found that the 3 left anterior LPFC regions were part of 3
separate brain subnetworks (Fig. 5), based on having distinct
functional connectivity patterns (Power et al. 2011; Yeo et al.
2011). This is strong evidence that these are distinct functional

Power et al. Yeo et al.

Resting-state network
partitions

Figure 5. The 3 left anterior LPFC regions are in separate brain network partitions.
Brainnetwork partitionswere identified in 2previous studies by clustering similar
patterns of resting-state functional connectivity. Power et al. (2011) used graph
theoretical community detection, while Yeo et al. (2011) used k-means
clustering. Both studies used resting-state data from over 100 healthy young
adults. We used the Power et al. (2011) “consensus” partition and the Yeo et al.
(2011) “17 networks” partition, both from the Connectome Workbench software
package. We plotted the centers of each of the 3 left anterior LPFC regions as
spheres. ROI 1 is light blue, ROI 4 is red, and ROI 8 is yellow. The distinct colors
under each sphere indicate that both partitions assigned these regions to 3
separate brain networks.
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regions, despite their spatial proximity and similar functionality
in the context of this study. It will be important for future studies
to determine why these 3 regions show such similar functional-
ity despite their distinct connectivity patterns, and whether they
interact with one another to support cognitive flexibility.

One concern with the correct versus error classification ana-
lysis (Fig. 3) may be the possibility of surprise/oddball activations
to the infrequent error trials. Specifically, changes in activation
related to infrequent events could have driven some of the differ-
ences between error and correct trials that lead to high classifica-
tion accuracies. This is a general problem, as this lack of balance
in correct versus error frequency is necessary for any dataset in
which nonrandom (i.e., overall above chance) task performance
is required. Importantly, the better rule classification perform-
ance for correct versus error trials (Fig. 4) was unlikely to have
been driven by surprise/oddball effects on error trials, given
that rule classification was orthogonal to behavioral accuracy.
This suggests that any surprise/oddball effect that may be pre-
sent for error trials is unlikely to explain the improved represen-
tational quality of task rules on correct trials within left anterior
LPFC.

The present results are consistent with several theories of
LPFC function. First, although several recent findings call this
theory into question (Crittenden and Duncan 2014; Reynolds
et al. 2012), the present findings are consistent with a hierarchic-
al organization of LPFC, in which the most abstract rules are re-
presented in the most anterior portions of LPFC (Fuster 2001;
Badre et al. 2009). These results are also consistent with the
Guided Activation theory of LPFC function (Miller and Cohen
2001), in which LPFC maintains task-relevant representations
and influences remote task-relevant regions via top-down bias-
ing of processing. Expansion of this framework based on recent
advances in network science—the Flexible Hub theory (Cole, Re-
povs, et al. 2014)—proposes that the frontoparietal control net-
work consists of highly connected “hub” regions that flexibly
shift their functional connectivity depending on task demands.
Importantly, a recent study testing this theory (Cole, Reynolds,
et al. 2013) used the same cognitive paradigm as used here,
and found that functional connectivity with LPFC (along with
other frontoparietal regions) could be used to decode which
task rules were being performed during RITL. This suggests the
representations identified in the present study likely spread to
other behavior-implementing regions (e.g., primary motor cor-
tex, sensory cortices) via changes in functional connectivity. It
will be important for future studies to investigate this possibility,
as well as the possibility that these functional connectivity
changes are sensitive to behavioral performance as found here
for left anterior LPFC activation patterns.
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