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A B S T R A C T   

Prescription opioid use disorder (POUD) has reached epidemic proportions in the United States, raising an urgent 
need for diagnostic biological tools that can improve predictions of disease characteristics. The use of neuro-
imaging methods to develop such biomarkers have yielded promising results when applied to neurodegenerative 
and psychiatric disorders, yet have not been extended to prescription opioid addiction. With this long-term goal 
in mind, we conducted a preliminary study in this understudied clinical group. Univariate and multivariate 
approaches to distinguishing between POUD (n = 26) and healthy controls (n = 21) were investigated, on the 
basis of structural MRI (sMRI) and resting-state functional connectivity (restFC) features. Univariate approaches 
revealed reduced structural integrity in the subcortical extent of a previously reported addiction-related network 
in POUD subjects. No reliable univariate between-group differences in cortical structure or edgewise restFC were 
observed. Contrasting these mixed univariate results, multivariate machine learning classification approaches 
recovered more statistically reliable group differences, especially when sMRI and restFC features were combined 
in a multi-modal model (classification accuracy = 66.7%, p < .001). The same multivariate multi-modal 
approach also yielded reliable prediction of individual differences in a clinically relevant behavioral measure 
(persistence behavior; predicted-to-actual overlap r = 0.42, p = .009). Our findings suggest that sMRI and restFC 
measures can be used to reliably distinguish the neural effects of long-term opioid use, and that this endeavor 
numerically benefits from multivariate predictive approaches and multi-modal feature sets. This can serve as 
theoretical proof-of-concept for future longitudinal modeling of prognostic POUD characteristics from neuro-
imaging features, which would have clearer clinical utility.   

1. Introduction 

Prescription opioid use disorder (POUD) is a serious public health 
problem in the United States. It is well documented that prescription 
opioids are easily available and this has resulted in an increase in both 
their medical and non-medical use (Compton et al., 2016; Dart et al., 
2015). According to CDC Wonder1, drug overdose deaths relating to 
prescription opioids increased from 3,442 in 1999 to 17,029 in 2017, 
leading to widespread acknowledgement of an ongoing opioid epidemic 
in the US. Whilst neuropsychological research has identified opioid- 
related cognitive deficits via behavioral studies (e.g. risky decision- 
making and aberrant cognitive control; Baldacchino et al., 2012), 
research on the long-term neural effects of POUD is comparatively 

lacking. Integrating greater knowledge of the neural effects with insights 
into cognitive dysfunction is likely critical to advancing a mechanistic 
understanding of opioid use disorders, and improving treatments in the 
clinic. 

Previously reported human neuroimaging studies have focused pre-
dominantly on illicit opioid use i.e. heroin. These studies have reported 
opioid-induced alterations to structural MRI (sMRI; Li et al., 2014; Liu 
et al., 2009), diffusion imaging (Li et al., 2016; Sun et al., 2017) and 
functional MRI (Fareed et al., 2017; Ieong and Yuan, 2017; Ma et al., 
2010; Yuan et al., 2010) measures, relative to healthy controls. These 
large-scale effects have been supplemented by the results of animal 
models of long-term opioid use, which also revealed prominent changes 
to brain structure and function at the cellular and systems level (Cunha- 
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Oliveira et al., 2007; Kibaly et al., 2019; Liao et al., 2005). Despite likely 
overlap in the neural pathophysiology of heroin addiction and POUD, 
differences might also arise due to the purer chemical composition of 
prescription opioid drugs (Risser et al., 2007; Upadhyay et al., 2010) and 
the different routes of consumption (i.e. sublingual for PO versus 
intravenous for heroin; Upadhyay et al., 2012). These possibilities 
further corroborate the need for research targeting the long-term neural 
effects of prescription opioids specifically. 

To this end, the few previous neuroimaging studies conducted in 
POUD subjects have almost exclusively used “univariate” analysis ap-
proaches to discriminate between POUD and healthy control groups. 
This typically takes the form of 2-sample ttests contrasting structural (e. 
g. sMRI morphometry measures) and/or functional (e.g. resting-state 
functional connectivity, restFC) measures separately for each region/ 
connection between the two groups. Such approaches have identified 
POUD-related alterations in distributed cortical (i.e. insula, orbito-
frontal cortex, anterior cingulate cortex, ventromedial prefrontal cortex) 
and subcortical (i.e. nucleus accumbens, dorsal striatum, amygdala, 
hippocampus; Lin et al., 2016; McConnell et al., 2020; Upadhyay et al., 
2010; Younger et al., 2011) regions, which overlap to a large degree 
with a “drug cue processing network” linked to general addiction- 
related dysfunction (Jasinska et al., 2014; Ray et al., 2015). Some of 
these regions have also been associated with behavioral variables with 
likely clinical relevance, such as structural volume in the nucleus 
accumbens correlating with the self-assessed severity of opioid misuse 
(McConnell et al., 2020; see also Upadhyay et al., 201022). 

In contrast to these univariate approaches, the field of clinical 
neuroscience has more recently transitioned towards “multivariate” 
approaches that seek to classify disease characteristics on the basis of the 
multivariate pattern of input brain imaging measures or “features” 
(Arbabshirani et al., 2017; Woo et al., 2017). Such approaches typically 
involve some degree of model training, rendering them part of a broad 
category of supervised “machine learning” (ML) algorithms in biomed-
ical research. The coefficients resulting from ML model training are then 
applied to generate predictions of disease characteristics in held-out test 
subjects. Multivariate ML approaches have been successfully applied to 
classify binary group status (1 = clinical, 0 = healthy control) across 
diverse forms of pathology (e.g. Alzheimer’s Disease; Kloppel et al., 
2008; Liu et al., 2018; Rathore et al., 2017; Woo et al., 2017) and psy-
chopathology (e.g. schizophrenia; Abi-Dargham and Horga, 2016; Orrù 
et al., 2012; Yahata et al., 2017; Yassin et al., 2020). The findings 
consistently demonstrate greater statistical sensitivity for multivariate 
ML classification approaches compared to univariate between-group 
contrasts (Hebart and Baker, 2018; Jimura and Poldrack, 2012; 
Spronk et al., 2020). The multivariate ML approaches are also by design 
more viable for clinical translation, given that trained models can be 
readily applied to generate predictions in individual subjects (unlike 
univariate approaches), as would be the use-case in the clinic. In addi-
tion to binary classifications of group status, multivariate ML ap-
proaches have more recently been used in predictive modeling of 
continuous behavioral outcome measures (Mill et al., 2020; Rosenberg 
et al., 2016; Shen et al., 2017). The potential for modeling clinically 
relevant behavior has brought the field closer to the long-term goal of 
developing neuroimaging “biomarkers”, with an ideal application being 
to harness multivariate ML methods towards prospective modeling of 
clinically useful disease characteristics (e.g. illness severity and prog-
nosis; Matthews and Hampshire, 2016; Woo et al., 2017). 

Despite this potential, multivariate ML approaches to analyzing 
neuroimaging data have thus far been scarcely applied to opioid 

addiction. The few previously published opioid-related papers have 
focused on classification of heroin users, and on the basis of isolated 
(uni-modal) MRI measures (resting-state fMRI activations or arterial 
spin labeling; Li et al., 2019; Zhang et al., 2011a; 2011b). The lack of 
multivariate ML applications is surprising given the sustained high 
relapse rate in opioid addiction (Li et al., 2016; Rong et al., 2016; 
Stewart et al., 2019; Tang et al., 2006), highlighting a clear need to go 
beyond current purely behavioral bases of diagnosing and monitoring 
outcomes in the clinic. 

We aimed to address these various lacunae in the present report. 
Multi-modal MRI data (sMRI and restFC) were analyzed for POUD 
subjects and healthy controls, encompassing cortical and subcortical 
regions. The efficacy of univariate and multivariate approaches in 
discriminating between the two groups was explored across both MRI 
modalities. Multivariate classification approaches were used to 
discriminate group status, whereas multivariate predictive modeling 
approaches were used to predict individual differences in a clinically 
relevant outcome measure (persistence in goal pursuit). The results 
provide theoretical proof-of-concept for the efficacy of multivariate 
(versus univariate) and multi-modal (versus uni-modal) approaches in 
the study of POUD. Specifically, we demonstrate that at a given time-
point following a POUD diagnosis, the neural and behavioral effects of 
long-term POUD use can be reliably identified from multivariate struc-
tural and functional neuroimaging data. Whilst this finding in of itself 
has theoretical utility in advancing our understanding of the brain basis 
of opioid addiction, our preliminary results are also discussed with a 
view to the long-term goal of developing more clinically useful prog-
nostic biomarkers from neuroimaging features. To preview the points 
raised in the Discussion, our reported success in classifying clinical 
status and predicting relevant behavior from neuroimaging data ac-
quired at the present timepoint could serve as a precursory step to more 
clinically useful prospective modeling of future disease outcomes (e.g. 
relapse rate assessed at a later timepoint) from the same data. 

2. Materials and methods 

2.1. Participants 

Twenty-six (5 female) individuals with prescription opioid use dis-
order (POUD group), and 21 (9 female) healthy volunteers with no 
history of substance use (control group), matched for age, education, 
and ethnic background were included in the study (see Table 1 for full 
sample demographics). Inclusion criteria for both groups included being 
between 21 and 54 years of age, English as their primary language, 
right-handedness, and near 20/20 vision (or corrected). Exclusion 
criteria for both groups included any serious physical illness, a history of 
childhood learning disability or special education that was current, 
presence of any serious psychiatric illness (for the POUD group, this 
entailed any psychiatric or substance use disorder other than POUD; 
further details below), MRI contraindications, claustrophobia, abnormal 
hearing in either ear, history of loss of consciousness for more than 30 
minutes, alcohol abuse and substance dependence including past 
dependence, and pregnancy for women. 

To clarify inclusion/exclusion criteria for the POUD subjects specif-
ically, these were recruited on the basis of meeting DSM 5 criteria for 
moderate-to-severe opioid use disorder, as operationalized in the SCID- 
5-RV (First, 2015). Our participants reported using opioids because of 
their strong desire to use these drugs, and their inability to control 
opioid use. Opioid patients with comorbid other substance use disorders 
(SUDs) were excluded from the study. Comorbid psychiatric disorders 
including psychotic disorders, depressive disorders, anxiety disorders, 
trauma and stressor-related disorders, and eating disorders were also 
exclusionary. To focus our study on long-term PO use, inclusion in the 
POUD group also required a history of using prescription opioid (PO) 
pills for at least the past 1 year and participants were excluded if they 
were co-dependent on both PO and any other substance. Note also that 

2 Note that of the POUD-related studies cited in this paragraph, only the 
Upadhyay et al (2010) study examined POUD users that were free from chronic 
pain. This avoided confounding the influence of long-term opioid addiction on 
the brain with the influence of chronic pain, which is a potential issue with the 
other studies cited here. 
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we only included POUD subjects that were not experiencing chronic 
pain, thereby avoiding another potential confounding influence on the 
assessed neural measures (Upadhyay et al., 2010). These strict inclu-
sion/exclusion criteria were essential in allowing us to study the long- 
term neural effects of PO use in a targeted manner. 

Opioid using participants were recruited from Integrity House’s 
inpatient addiction treatment center, a drug free facility in Newark, New 
Jersey. Patients were detoxified before admission to this treatment fa-
cility, which had a 6 month-long inpatient treatment program. During 
the 2nd/3rd week since their admission, we conducted a screening 
interview and if eligible, the patients were recruited for the study. All 
participants took part in the study towards the end of the first month 
since their admission. All recruited POUD subjects had been abstinent 
from PO since admission to the center, and were not undergoing 
methadone or buprenorphine treatment. Thus, by the time patients took 
part in the study, they were not experiencing opioid withdrawal. To 
summarize, our screening protocols ensured that POUD subjects in our 
final sample were long-term PO users (mean duration of use = 5.5 years, 
see Table 1), were not undergoing withdrawal, were free from chronic 
pain, and were free from serious physical or psychiatric comorbidity. 
Control participants were recruited by advertising in North Jersey 
Craigslist and by word-of-mouth. 

On the day of scanning at the Rutgers University Brain Imaging 
Center (RUBIC), all participants provided written informed consent 
approved by the Rutgers University Institutional Review Board (IRB), 
and were administered a urine screen to rule out pregnancy in women, 
and to ensure negative urine toxicology for cocaine, methamphetamine, 
THC, opiate, and benzodiazepines (via the One Step Multi-Drug Screen 
Test Panel). They were also assessed for recent alcohol use with a 
breathalyzer, and self-rated opioid craving. The groups did not differ in 

alcohol or tobacco use at the time of enrollment (see Table 1 for all 
between-group comparisons). At the end of the study, participants 
received a VISA gift certificate worth $100 for their participation. 

2.2. Data acquisition. 

MRI was collected on a 3 T Siemens TRIO scanner with a 32-channel 
head coil at the Rutgers University Brain Imaging Center (RUBIC). The 
findings reported here focus on structural and resting-state functional 
MRI scans, which were collected as part of a broader study that included 
task fMRI scans targeting cue reactivity, reward and punishment pro-
cessing underlying POUD (which are not analyzed here). Structural MRI 
images were acquired with a T1-weighted MPRAGE sequence (TR =
1900 ms, TE = 2.52 ms, flip angle = 9◦, FOV = 256 mm, 1 mm isotropic 
voxels, 176 slices in sagittal orientation). Resting-state fMRI images 
were acquired via a whole-brain echo planar imaging (EPI) sequence 
with multiband acceleration (TR = 600 ms, TE = 28.2 ms, flip angle 30◦, 
FOV = 208 mm, 1.5 × 1.5 × 3 mm voxels, 35 interleaved slices in axial 
orientation, multiband acceleration factor 5; 1 run of 600 volumes). 
Dual-echo gradient-recalled echo (GRE) fieldmaps were also acquired 
prior to the fMRI sequence to correct b0 distortions in the functional 
data. During the rest fMRI scans, participants were instructed to keep 
their eyes open and focus on a fixation cross for 6 minutes. 

2.3. Estimation of structural MRI measures 

All processing of the T1 sMRI images was conducted in Freesurfer 
(Dale et al., 1999; Fischl, 2004; Fischl et al., 2002). Full anatomical T1 
segmentation was performed for each subject using the “recon-all” 
command. From the outputs of this command, the “aparcstats2table” 
command was used to extract cortical surface gray matter thickness (in 
mm) from regions parcellated from a standard anatomical atlas (Desikan 
et al., 2006). We used the “asegstats2table” command to extract mean 
image intensity (in raw MR signal units) from atlas-defined subcortical 
volume regions. Both the cortical thickness and subcortical intensity 
measures were confined to anatomical atlas regions that overlapped 
with regions in the drug cue processing network (Ray et al., 2015), 
previously highlighted as a critical network of dysfunction in drug 
addiction. Homologues for all 18 ROIs reported in the Ray et al paper 
(which was established in an independent sample of subjects) were 
identified in the aparc/aseg results and averaged across hemispheres. 
This yielded a total of 10 ROIs that formed the basis of the univariate and 
multivariate sMRI analyses: 4 subcortical regions (amygdala; hippo-
campus; nucleus accumbens, NA; dorsal striatum) with corresponding 
intensity values, and 6 cortical regions (anterior cingulate cortex, ACC; 
dorsolateral prefrontal cortex, dlPFC; insula; medial orbitofrontal cor-
tex, mOFC; medial prefrontal cortex, mPFC; parahippocampus, PHC) 
with corresponding thickness values. 

2.4. Estimation of resting-state functional connectivity measures 

Preprocessing of the rest fMRI data was conducted in FSL using the 
FEAT toolbox (Woolrich et al., 2001). The fMRI volumes were first 
motion-corrected using a single-band volume acquired at the start of the 
run as the reference for realignment. The volumes then underwent b0 
unwarping using the GRE fieldmaps, removal of non-brain tissue, 
highpass filtering with a 0.01 Hz cutoff, linear coregistration to the 
subject’s anatomical T1 and nonlinear normalization to an MNI tem-
plate. Resting-state activation timeseries were then extracted from 264 
whole-brain regions defined from the Power functional atlas (Power 
et al., 2011). General linear model (GLM) nuisance regression was 
performed for the regional timeseries to remove artifacts, which 
included regressors for 6 motion parameters, white matter and ven-
tricular timeseries, and their temporal derivatives. Volumes with a 
framewise displacement (FD; Power et al., 2014; 2012) greater than 
0.25 mm were scrubbed from the GLM to reduce motion contamination. 

Table 1 
Demographic and substance use information for individuals with POUD and 
healthy controls. “Diff. stat” refers to test statistics for between-group difference 
contrasts of specified variables; 2-sample ttests were conducted for all variables 
apart from the categorical “Female” sex measure (for which the odds ratio from a 
Fisher’s exact test is provided).   

POUD (n = 26): 
Mean, Range (SD) 

Control (n =
21): Mean, 
Range (SD) 

Diff. 
stat 

p 

Age (yrs.) 32, 22–48 (6.3) 33, 21–54 (6.5) 0.74 0.46 
Education (yrs.) 12, 3–20 (2.4) 13, 7–20 (2.1) 1.04 0.30 
Race/Ethnicity      

Caucasian 11 6    
African 
American 

14 11    

Hispanic 1 4   
Female (n) 5 9 3.15 0.112 
Opioid Craving 

(before scan) 
3.04, 1–7 (2.11) 1, 1–1 (0.00) 4.43 0.001 

Prescription Opioid 
Use      

Frequency 
(days/week) 

6.8, 3–7 (0.38) N/A    

Duration of use 
(yrs.) 

5.5, 2–20 (3.35) N/A    

Money spent 
($/week) 

$739, $70–2,500 
(483) 

N/A   

Alcohol Use (no. of 
drinks/week) 

0.62, 0–2 (0.85) 0.86, 0–3 (1.1) − 0.87 0.39 

Cigarette Use      
Frequency 
(days/week) 

7 7    

Quantity 
(cigarettes/ 
day) 

6.21, 4–9 (1.53) 5.75, 3–8 (1.67) 0.66 0.52  

Non-smokers 
(#) 

12 13   

Note. Non-cigarette smokers’ frequency and quantity data were not included in 
the group average. 
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Resting-state functional connectivity (restFC) was finally estimated from 
the cleaned residual timeseries for each subject, as the Pearson corre-
lation coefficient between all pairs of regions. This yielded a 264-by-264 
symmetric restFC matrix for each subject that was used for all univariate 
and multivariate analyses. 

2.5. Univariate between-group analyses involving sMRI and restFC 
features 

Univariate sMRI analyses consisted of mixed factor analysis of vari-
ance (ANOVA), conducted separately for the subcortical regional in-
tensity and cortical regional thickness measures. For the subcortical 
regions, a 2 (group: POUD, control) × 4 (region: amygdala, hippocam-
pus, NA, dorsal striatum) mixed ANOVA was conducted. For the cortical 
regions, a 2 (group: POUD, control) × 6 (region: ACC, dlPFC, insula, 
mOFC, mPFC, PHC) mixed ANOVA was conducted. In both cases, 
‘group’ was the between-subjects factor and ‘region’ was the within- 
subjects factor. Planned 2-sample ttests contrasting POUD versus con-
trol groups for each region were also performed to follow up on the 
ANOVA results. For these analyses, significance was assessed against an 
uncorrected alpha threshold of 0.05. 

Univariate restFC analyses also followed a standard approach, with 
2-sample ttests contrasting the POUD and control groups separately for 
each connection in the upper diagonal of the 264-by-264 matrix (34716 
connections total). The r values for each connection were Fisher-z 
transformed to improve normality before being submitted to the ttest. 
Significance was assessed after FDR correction for multiple comparisons 
across connections (corrected alpha = 0.05; Benjamini and Hochberg, 
1995). 

2.6. Multivariate machine learning classification using sMRI and restFC 
features 

We trained multivariate machine learning (ML) classifiers to 
discriminate between the POUD and control group subjects. Unlike the 
univariate approaches described above that treated each region (for 
sMRI measures) or connection (for restFC) as a discrete unit of analysis, 
multivariate classifiers utilize algorithms that search for the pattern 
amongst such units (i.e. features) that can optimally separate classes to 
which input observations are drawn from. In our context, we classified 
subjects (observations) into their clinical groups (classes): POUD or 
control. Our chosen algorithm was a minimum-distance classification 
approach related to representational similarity analysis, which has been 
successfully applied to human neuroimaging data in a number of studies 
(Diedrichsen and Kriegeskorte, 2017; Haxby, 2001; Hebart and Baker, 
2018; Kriegeskorte et al., 2008; Mur et al., 2009). As described in more 
detail below, this minimum distance approach classifies an individual 
subject on the basis of the multivariate distance (Pearson correlation) 
between their feature values and two group templates (created by 
averaging over the same features in “control” and “POUD” group sub-
jects in the held-out training data). This simple linear classifier has been 
used successfully to distinguish a wide array of clinical groups from 
healthy controls on the basis of neuroimaging data (Mill et al., 2020; 
Spronk et al., 2020). 

Separate classifiers were trained on 4 feature sets extracted from the 
individual subjects. The “sMRI only” classifier used the same measures 
from the univariate sMRI analyses: subcortical image intensity from 4 
regions and cortical thickness from 6 regions. The “sMRI subcortex” 
classifier used only the image intensity values from the 4 subcortical 
regions. The “restFC only” classifier used the same measures from the 
univariate restFC analyses: connections (Pearson r values) extracted 
from the upper diagonal of each subject’s full restFC matrix. Given the 
high dimensionality of restFC (34716 connections total), we performed 
a feature selection step to identify the top 50 most diagnostic features 
(described fully in the next paragraph). Finally, the “combined” (i.e. 
multi-modal) classifier input the 10 structural features used in the sMRI 

classifier and the top 50 features identified by the restFC classifier to 
distinguish between the groups. 

The procedure for quantifying classification performance followed 
the same leave-one-subject-out crossvalidation scheme across all 4 
feature sets. Firstly, given that the POUD group (n = 26) was larger than 
the control group (n = 21), we confined the classification analyses to a 
random subset of 21 POUD subjects to ensure that model training was 
performed on balanced group sizes (Poldrack et al., 2019). A total of 42 
subjects were hence submitted to crossvalidation, wherein each subject 
was iteratively held out as a test subject, with all other subjects used for 
model training. Specific to the restFC and combined classifiers, feature 
selection was performed at the start of each crossvalidation loop to 
confine the number of connectivity features to those that were most 
diagnostic of group status. These diagnostic features were identified via 
2-sample ttests contrasting the two groups (excluding the held-out test 
subject to prevent circularity), separately for each connection (similar to 
Dosenbach et al., 2010). The top 50 connections were selected by sorting 
the absolute t statistics. Note that this feature selection step was fully 
embedded in the crossvalidation scheme (i.e. is applied to the training 
set only) rather than being applied as a preliminary step to the full 
sample. The latter approach has been highlighted as a common pitfall in 
applying machine learning approaches to disease classification, as it 
leads to inflated classification accuracies from double-dipping (Arbab-
shirani et al., 2017). 

Following feature selection, group templates were created by aver-
aging selected features separately for the POUD and control subjects in 
the training set (again, excluding the held-out test subject). Pearson 
correlation (r) was used to assess the distance between the test subject’s 
features and both group templates, with a binary classification decision 
(“POUD” versus “control”) set on the basis of which group template r 
value was higher. This process was repeated holding out each subject in 
the sample, with classification performance assessed as the average 
decision accuracy across crossvalidation loops. 

Classification accuracy was quantitatively compared across the four 
feature sets. Statistical significance of the classification accuracies was 
assessed via a permutation approach. This generated a null distribution 
of classification accuracies by scrambling the group labels prior to 
running the classification on the same feature sets (over 1000 itera-
tions). P values were set as the proportion of permuted classification 
accuracies that were greater than that observed for each (unscrambled) 
classifier, at alpha = 0.05. This permutation testing approach ensured 
that random noise in the sample was not driving the between-groups 
classification (Mill et al., 2020). To facilitate comparison across the 
different feature sets, the same scrambled group labels (for each of the 
1000 iterations) were used when generating null distributions for all 
reported ML models. Note that the pattern of classification accuracies 
was identical when using binomial tests against 50% chance accuracy. 
Where noted, we also corrected classification accuracy p values for 
multiple modeling variations via the Holm-Bonferroni familywise error 
correction procedure (Holm, 1979; Mill et al., 2016). 

We conducted a number of control analyses to illustrate that the 
significant group classification achieved by the “combined” feature 
model was robust to analytic variation. Firstly, whilst we chose 50 as the 
number of diagnostic restFC features on a somewhat principled basis (i. 
e. as the nearest “whole” number matching the sample size of 42), we 
also trained models after varying this hyperparameter to select the top 
100 or top 150 connections. We also ran the classifications with an 
alternative k-folds crossvalidation approach, wherein 90% of subjects 
were assigned to training and 10% to testing sets over 10 folds (each test 
fold containing equal numbers of POUD and control subjects that were 
uniquely assigned across folds). We also ran the classifications using an 
alternative linear classification algorithm - support vector machine - 
using the libSVM toolbox implementation (Chang and Lin, 2011) with 
leave-one-out crossvalidation. Finally, we also demonstrated that clas-
sification performance was not driven by head motion: firstly by 
calculating the Spearman correlation between subjects’ group status (1 
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= POUD, 0 = control) and the mean framewise displacement (FD) across 
their resting-state session. For completeness, we also regressed out the 
mean FD from each input feature prior to running the “combined” 
classification model (following e.g. Rao et al., 2017; Todd et al., 2013). 

2.7. Multivariate predictive modeling of task behavior 

We used a multivariate approach to model individual differences in a 
clinically relevant behavioral measure. The selected measure was 
behavioral performance on the Persistence-After-Setbacks (PAS) task, 
which has been described in detail previously (Bhanji et al., 2016; Bhanji 
and Delgado, 2014; Bhanji et al., in revision). Briefly, participants played 
a “path decision game” in which they chose a path and tried to earn 
points by advancing a stick figure through obstacles to the end of the 
path. To start each round, participants chose between three paths with a 
point value at the end (80, 70, or 60 points). Participants then 
encountered obstacles while taking steps along the chosen path, and 
pressed a button to see if the obstacles resulted in a negative event 
received (62.5% of obstacles, stick figure is sent back to the beginning of 
the path) or negative event avoided (37.5% of obstacles, stick figure 
advances one step forward along the path). After receiving a negative 
event, participants made a decision to persist with their chosen path (i. 
e., the path where they just received a negative event) or choose a 
different path. Persistence behavior was calculated as the proportion of 
choices to persist with the same path after a negative event. This mea-
sure was used as the outcome for our predictive modeling analyses as it 
captures cognitive processes underlying persistent pursuit of a goal 
despite setbacks that are likely disrupted in clinical addiction disorders, 
and are likely prognostically relevant (e.g. capturing unwillingness to 
persist on a rehabilitation program after experiencing a relapse; Sinha, 
2007). In the Results, we confirm the clinical relevance of this behav-
ioral measure by contrasting it across the POUD and control groups via 
2-sample ttest. 

Our multivariate modeling approach was applied to all subjects that 
completed the task (POUD n = 19, control n = 19). Multiple linear 
regression models were trained to predict persistence behavior from the 
same four feature sets used in the ML classification analyses: sMRI only 
(4 subcortical image intensity plus 6 cortical thickness features), sMRI 
subcortex (4 subcortical image intensity features), restFC only (top 50 
diagnostic connection features), and combined (multi-modal: 10 sMRI 
features plus top 50 diagnostic restFC features). Leave-one-subject-out 
crossvalidation was again used to assess model performance. On each 
crossvalidation loop, the held-out test subject was identified and the 
remaining subjects were assigned to the training set. All input features 
were then zscored across subjects, using the training set mean and 
standard deviation to prevent circularity. The to-be-predicted persis-
tence data were also zscored in non-circular fashion (using the training 
set mean and standard deviation) prior to model estimation. 

For models involving restFC features (“restFC only” and “com-
bined”), we adapted the top 50 diagnostic feature selection approach 
used for the ML classifications to better reflect individual differences- 
style modeling. Diagnostic connections were identified as the top 50 
absolute values for the Pearson correlation between connectivity and the 
persistence outcome measure, computed across training set subjects. 
Note we did not vary this “top n” hyperparameter to maintain consis-
tency with the top n value that previously yielded positive ML classifi-
cation results. For the restFC and combined models, this resulted in the 
number of features (50 and 60 respectively) exceeding the number of 
observations (37 training subjects). Hence, principal component anal-
ysis (PCA) was used to reduce the dimensionality of the input feature 
matrix and ensure it was full rank (Mill et al., 2020). PCA was conducted 
on training set features (trainX), with the number of retained compo-
nents varied over two values: the max permitted by the data (i.e. the 
number of training set subjects minus 1 = 36), and 10. The latter was 
expected to perform better as including all available PCs likely causes 
the model to overfit to noise in the training set. 

The persistence data for the training set (trainY) were then regressed 
onto the selected number of PC scores (max or 10), with the resulting 
regression coefficients multiplied by the corresponding PCA loadings to 
obtain model beta estimates. These betas were multiplied with the held- 
out test subject’s features (testX) to generate a predicted behavioral 
score (testŶ). This process was repeated with all 38 subjects iteratively 
assigned to the test set, with behavioral prediction accuracy finally 
quantified as the Pearson correlation between the predicted and actual 
persistence scores. Statistical significance was assessed via p values 
accompanying the Pearson r (alpha = 0.05). Whilst the Pearson corre-
lation values provided insight into how well the pattern of individual 
differences in behavior across subjects was predicted, for completeness 
we also reported the mean absolute error (MAE) capturing prediction 
accuracy in more absolute terms (Poldrack et al., 2019; Scheinost et al., 
2019), as well as the R squared coefficient of determination (calculated 
using the sum of squares formulation, as recommended in Poldrack 
et al., 2019). Note that we corrected for the variation in the number of 
PCs hyperparameter via the Holm-Bonferroni familywise error correc-
tion procedure (Holm, 1979; Mill et al., 2016). 

As with the ML classification analyses, we demonstrated that pre-
diction accuracy for the “combined” model was not driven by head 
motion: both by computing the Spearman correlation between behav-
ioral persistence and mean FD, and also by regressing out mean FD from 
each input feature prior to running the “combined” predictive model. To 
further demonstrate robustness, we also repeated the combined pre-
dictive modeling analysis with an alternative k-folds crossvalidation 
scheme (90% of subjects assigned to training and 10% to testing sets, 
over 9 folds). 

3. Results 

3.1. Univariate sMRI analyses revealed between-group structural 
differences in subcortical but not cortical regions 

The utility of univariate approaches in separating the POUD group 
from the control group on the basis of sMRI features was investigated via 
mixed factor ANOVA, with “group” entered as a between-subjects factor 
and “region” as a within-subjects factor. For subcortical drug cue-related 
regions from which MR image intensity had been extracted (see Method 
2.3), the 2 (group: POUD, control) × 4 (region: amygdala, hippocampus, 
NA, dorsal striatum) ANOVA yielded a main effect of region: F(3,135) =
2017.83, p < .001, η2

G = 0.91 (see Fig. 1a for descriptives). The main 
effect of group was a non-significant trend in the direction of lower 
regional intensity for the POUD subjects: F(1,45) = 3.50, p = .068, η2

G 
= 0.06 (marginal means: POUD = 82.84, control = 83.69). Importantly, 
the region × group interaction was significant: F(3,135) = 3.97, p =
.009, η2

G = 0.02. Examining the means in Fig. 1a revealed that the 
interaction was driven by the POUD < control effect varying in 
magnitude (but not direction) across the regions. Planned 2-sample 
ttests supported this, revealing that the lower intensity for the POUD 
subjects was significant for the dorsal striatum (t(45) = 2.45, p = .018, 
Cohen’s d = 0.72) and NA (t(45) = 2.31, p = .025, d = 0.68), but not for 
the hippocampus (t(45) = 0.91, p = .370, d = 0.27) and amygdala (t(45) 
= 0.74, p = .461, d = 0.22). 

We repeated the mixed ANOVA approach for cortical drug cue- 
related regions from which surface gray matter thickness had been 
extracted (see Method 2.3). The 2 (group: POUD, control) × 6 (region: 
ACC, dlPFC, insula, mOFC, mPFC, PHC) mixed ANOVA yielded a sig-
nificant main effect of region: F(5,225) = 159.21, p < .001, η2

G = 0.63 
(see Fig. 1b for descriptives). The main effect of group was non- 
significant: F(1,45) = 0.03, p = .863, η2

G = 0.00 (marginal means: 
POUD = 2.66, control = 2.65). The region × group interaction was a 
non-significant trend: F(5,225) = 2.16, p = .060, η2

G = 0.02. Inspection 
of the means in Fig. 1b suggested that the group effect on cortical 
thickness varied in both magnitude and direction across regions. Plan-
ned 2-sample ttests revealed no significant differences between the 
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POUD and control groups for any of the 6 regions (sign of all t statistics 
reflects POUD > control): PHC t(45) = 1.27, p = .212, d = 0.37; mPFC t 
= -1.23, p = .223, d = 0.36; mOFC t = -0.91, p = .368, d = 0.27; ACC t =
0.76, p = .450, d = 0.22; insula t = 0.35, p = .730, d = 0.10; dlPFC t =
-0.05, p = .960, d = 0.02. 

To rule out the potential confounding influence of sex and head 

motion (quantified as the mean framewise displacement, FD, across each 
subject’s resting-state fMRI session), we repeated the above analyses 

Fig. 1. Univariate analyses revealed between-group differences for subcortical sMRI measures, but not cortical sMRI or restFC measures. A) Subcortical 
sMRI results: mean image intensity (MR units) across volumetric Freesurfer ROIs. Each bar represents the mean and standard error for each region, with individual 
subject data points overlaid, separately for the POUD (blue) and Control (orange) groups. Asterisks denote significant between-group differences via 2-sample ttest at 
p < .05 (uncorrected). d. striatum = dorsal striatum; Hippo. = hippocampus; N. Acc. = nucleus accumbens. B) Cortical sMRI results: gray matter thickness (mm units) 
across surface Freesurfer ROIs. Plotting conventions are the same as in panel A. mOFC = medial orbitofrontal cortex; PHC = parahippocampus; dlPFC = dorsolateral 
prefrontal cortex; mPFC = medial prefrontal cortex; ACC = anterior cingulate cortex. C) RestFC results: 264-by-264 region restFC matrices for the group average 
POUD (top left), group average Control (top middle) and group difference (POUD minus Control; top right). Matrices plot Pearson r connectivity values, with the 
Power et al (2011) functional atlas from which the 264 regions were localized depicted in the bottom panel. Note that the unthresholded difference matrix is 
provided as none of the connections significantly differed between the two groups after multiple comparison correction. Network affiliations for each region: AUD =
auditory; CER = cerebellar; CON = cingulo-opercular; DMN = default mode; DAN = dorsal attention; FPN = fronto-parietal; SAL = salience; SMH = somatomotor 
hand; SMF = somatomotor face; SUB = subcortical; VAN = ventral attention; VIS = visual. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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after including both variables as covariates3. For the 2 × 4 subcortical 
ANOVA, the pattern was unchanged: significant main effect of ROI (F 
(3,129) = 256.01, p < .001, η2

G = 0.57), non-significant main effect of 
group (F(1,43) = 2.19, p = .146, η2

G = 0.04), with a significant inter-
action (F(3,129) = 4.37, p = .006, η2

G = 0.02). Planned pairwise con-
trasts of the subcortical structural measures across the two groups were 
conducted via one-way ANCOVA (including the same covariates), 
separately for each region. This also yielded the same pattern of results: 
significant group differences in the same directions for the dorsal 
striatum (F(1,43) = 4.99, p = .031) and NA (F(1,43) = 4.37, p = .043), 
but not for the other regions (both p > .600). For the 2 × 6 cortical 
ANOVA, the pattern was unchanged: significant main effect of ROI (F 
(5,215) = 26.94, p < .001, η2

G = 0.23), non-significant main effect of 
group (F(1,43) = 0.00, p = .968, η2

G = 0.00) and non-significant 
interaction (F(5,215) = 1.93, p = .090, η2

G = 0.02). All cortical 
regional pairwise ANCOVA contrasts were also non-significant (all p >
.200). Hence, the pattern of sMRI results was unchanged by inclusion of 
sex and head motion as covariates, ruling out their potential con-
founding influence. 

To summarize, the univariate sMRI analyses were able to distinguish 
the POUD subjects from the healthy controls based on subcortical in-
tensity but not cortical surface thickness. The subcortical intensity re-
sults suggested a trend towards generally reduced structure in 
subcortical regions associated with drug cue processing in the POUD 
subjects, with this trend reaching statistical significance in the dorsal 
striatum and NA (i.e. ventral striatum). The cortical surface thickness 
analyses failed to yield a significant result, both in the ANOVA and the 
planned 2-sample ttests. This latter result highlights a partial lack of 
sensitivity of the univariate approaches in discriminating between the 
POUD and control groups, which we expand upon in subsequent 
sections. 

3.2. Univariate restFC analyses failed to distinguish between POUD and 
healthy subjects 

The restFC analyses focused on 264 regions localized from the whole- 
brain Power functional atlas (Power et al., 2011). To further probe the 
efficacy of univariate approaches, we contrasted restFC between the 
POUD and control groups via 2-sample ttests at each individual 
connection (after Fisher-z transforming the Pearson r values, with FDR 
correction for multiple comparisons; see Method 2.5). Fig. 1c depicts the 
average restFC matrix for each group, and the unthresholded difference 
matrix for POUD minus control. Whilst there are subtle differences 
visible in the unthresholded difference matrix (e.g. numerically greater 
within-network connectivity of the default mode network, DMN, for 
POUD), no connection survived multiple comparison correction. This 
lack of significance held after controlling for potential sex and head 
motion confounds via one-way ANCOVAs conducted at each connection, 
with sex and mean FD entered as covariates, and resulting p values FDR- 
corrected for multiple comparisons. Coupled with the mixed signifi-
cance observed with the univariate sMRI analyses, this result further 
evidences a lack of sensitivity of standard univariate approaches in 
separating POUD from healthy control subjects. 

3.3. Multivariate ML classification: sMRI features reliably discriminated 
POUD from healthy subjects 

We examined whether multivariate machine learning approaches 
could more successfully discriminate between the two groups on the 
basis of the multivariate pattern amongst input features. All reported 
classifiers used the same minimum-distance classification algorithm 
(Diedrichsen and Kriegeskorte, 2017; Mill et al., 2020; Mur et al., 2009; 
Spronk et al., 2020), with performance quantified via the same cross-
validation approach, and significance of the observed classification ac-
curacies assessed via permutation testing (see Method 2.6 for details). 

The first “sMRI only” classifier input the same structural features as 
those used in the univariate analyses (MR image intensity from 4 
subcortical regions and gray matter thickness from 6 cortical regions; 
see Method 2.6). This classifier was able to reliably discriminate be-
tween POUD and control group subjects (see Fig. 2): 64.3% mean clas-
sification accuracy, 66.7% sensitivity in classifying POUDs, 61.9% 
specificity in classifying controls; p = .013 via permutation test, null 
classification mean = 50.2%. Note that this classifier included the 6 
cortical sMRI features that failed to yield significant between-group 
differences in the univariate analyses (via mixed ANOVA and 2-sample 
ttests, see section 3.1). To probe the influence these non-significant 
univariate features might have had on multivariate classification per-
formance, we trained an additional “sMRI subcortex” classifier that used 
only the 4 subcortical intensity features. This yielded numerically worse 
classification accuracy than the “sMRI only” classifier, and failed to 
reach statistical significance (see Fig. 2): 57.1% mean accuracy, 61.9% 
POUD sensitivity, 52.4% control specificity; p = .105, null mean =
49.8%. 

The results demonstrate statistically reliable discrimination of POUD 
subjects via a multivariate ML classifier trained using sMRI features. 
Further highlighting the sensitivity of multivariate analyses, we 
observed a numerical improvement in classification accuracy with in-
clusion of cortical thickness features that did not distinguish between 
the groups via univariate approaches. 

3.4. Multivariate ML classification: restFC features reliably discriminated 
POUD from healthy subjects 

We applied the same multivariate classification approach to distin-
guish between the POUD and control group subjects, this time on the 
basis of restFC features. Given the high dimensionality of restFC (34716 
connections from the upper diagonal of the 264-by-264 matrix), we 
performed a feature selection step at the start of each crossvalidation 
loop that confined classifier training to the top 50 most diagnostic 
connections (see Method 2.6. for details). The resulting “restFC only” 
classifier also achieved significantly above-chance classification accu-
racy (see Fig. 2): 64.3% mean accuracy, 76.2% POUD sensitivity, 52.4% 
control specificity; p = .015, null mean = 50.3%. This finding further 
highlights the utility of multivariate over univariate approaches in 
capturing neural differences characteristic of opioid addiction. ML 
classifiers trained on restFC features yielded significantly above-chance 
classification accuracy whereas univariate approaches applied to the 
same features were unable to do so. 

3.5. Multivariate ML classification: Combining sMRI and restFC features 
in a multi-modal classifier numerically improved classification accuracy 

We next determined whether combining the same sMRI and restFC 
features, which yielded significant classification accuracies in their 
standalone ML models, in a single multi-modal classifier would 
numerically improve performance. This “combined” ML classifier 
included the 10 sMRI features and the top 50 diagnostic restFC features 
(see Method 2.6 for details). As anticipated, classification accuracy was 
numerically improved for this “combined” classifier compared to all 
previously presented uni-modal classifiers (see Fig. 2): 66.7% mean 

3 Note that this analysis was motivated by the result of the Fisher exact test 
contrasting sex proportions across the two groups, summarized in Table 1. 
Whereas the Fisher result in the full sample (used for these univariate analyses) 
yielded a p value of 0.112, Fisher tests contrasting gender in the balanced 
sample used for the ML classification analyses (21 POUD, 21 Control) and the 
balanced sample used for the ML behavioral modeling analyses (19 POUD, 19 
Control) were both clearly non-significant (p=.326 and p=.495 respectively). 
Hence, analyses controlling for sex were conducted in the univariate sample but 
not for either of the multivariate classification/behavioral modeling 
subsamples. 
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accuracy, 66.7% POUD sensitivity, 66.7% control specificity; p < .0014, 
null mean = 50.2%. The combined ML classifier yielded a 2.4%, 9.6% 
and 2.4% improvement in classification accuracy compared to the sMRI 
only, sMRI subcortex and restFC only classifiers respectively. We 
demonstrate in the following section that these numerical improvements 
are reliable across variation in subsampling of the larger POUD group. 
Additional control analyses are also presented that highlight the 
robustness of the “combined” classification results, thereby evidencing 
the utility of multi-modal over uni-modal approaches. 

3.6. Control analyses highlighted robustness of the combined ML classifier 

To demonstrate robustness of the combined ML classification results, 
we firstly varied the “top n” hyperparameter governing the number of 
diagnostic restFC connections included as features. This was set to top 
50 for the main results (see Method 2.6). Multivariate ML classifiers that 
were trained using the top 100 and top 150 diagnostic restFC features 
yielded identical, significantly above-chance classification accuracies; 
for both top 100 and top 150: 66.7% mean accuracy, 66.7% POUD 
sensitivity, 66.7% control specificity; p < .001, null mean = 50.2%. 
Secondly, we performed the combined classification using an alternative 
k-fold crossvalidation approach (see Method 2.6). This also yielded 
significantly above-chance classification accuracy: 65.0% mean accu-
racy, 65.0% POUD sensitivity, 65.0% control specificity; p = .017, null 
mean = 50.2%. Finally, we also ran the combined classification using an 
alternative linear classifier (support vector machine, see Method 2.6 for 
details), which again yielded significantly above-chance accuracy: 
73.8% mean accuracy, 76.2% POUD sensitivity, 71.4% control speci-
ficity; p = .003, null mean = 46.7%. Note that statistical significance 
was maintained after correcting for experimenter degrees of freedom 
across these 5 variations in combined ML model estimation parameters 

(top 50 with leave-one-out crossvalidation, top 100 with leave-one-out, 
top 150 with leave-one-out, top 50 with k-folds and top 50 with SVM 
leave-one-out), via the Holm-Bonferroni familywise error procedure (at 
corrected alpha = 0.05). 

For the main “combined” classifier, we randomly selected 21 subjects 
from the POUD group (n = 26) to match the 21 healthy control subjects 
recruited, thereby ensuring that group sizes were balanced during 
classifier training (see Method 2.6 for details). To ensure that the pattern 
of results was not affected by this subsampling, we reran the entire ML 
analysis four times, each with unique randomization of the POUD sub-
jects. As can be observed in the summary Table 2, the “combined” model 
yielded significantly above-chance classification accuracy across these 
POUD subsampling variations (5 including the main classifier presented 
in section 3.5). The results of the random POUD subsampling also 
highlight the robustness of the numerical improvement in classification 
accuracy for the “combined” versus uni-modal classifiers. Across all 5 
variations, the “combined” model yielded higher classification accu-
racies 3/5 times versus the “sMRI only” classifier (with the two 

Fig. 2. Multivariate classifiers trained on sMRI 
only, restFC only and combined (multi-modal: 
sMRI and restFC) feature sets reliably discrim-
inated between POUD and control subjects. 
Plotted are the observed mean classification accu-
racies across models (orange circles), and the mean 
of the permuted null classifications (blue circles, 
bars represent standard deviation over n = 1000 
permutations). Asterisks denote significance of the 
observed classification accuracies versus the 
permuted null. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Table 2 
High performance of the combined ML classifier was preserved across 
variation in POUD group subsampling. Presented are the mean classification 
accuracies for each of the 4 classifier models (columns) across the 5 subsampling 
variations (rows). P values assessing the statistical significance of the observed 
accuracies against permuted null distributions are presented in parenthesis.   

sMRI only sMRI 
subcortex 

restFC only combined 

R1 
(main) 

64.3% (p =
.013) 

57.1% (p =
.105) 

64.3% (p =
.015) 

66.7% (p <
.001) 

R2 61.9% (p =
.025) 

57.1% (p =
.113) 

54.8% (p =
.162) 

61.9% (p =
.025) 

R3 64.3% (p =
.020) 

57.1% (p =
.117) 

61.9% (p =
.016) 

66.7% (p =
.011) 

R4 61.9% (p =
.029) 

59.5% (p =
.058) 

64.3% (p =
.005) 

66.7% (p =
.006) 

R5 64.3% (p =
.011) 

50.0% (p =
.364) 

42.9% (p =
.825) 

64.3% (p =
.011)  

4 Note that all significant classification accuracies depicted in Fig. 2 (sMRI 
only, restFC only and combined models) survived familywise error correction 
across the 4 feature set models (via Holm-Bonferroni, corrected alpha=0.05). 
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remaining instances yielding equal classification accuracies), 5/5 times 
versus the “sMRI subcortex” classifier, and 5/5 times versus the “restFC 
only” classifier. 

3.7. Multivariate model using combined features yielded numerically 
strongest prediction of individual differences in persistence behavior 

We next implemented a multivariate approach to predictive 
modeling of clinically relevant behavior. Subjects in our sample 
completed an out-of-scanner behavioral task designed to measure indi-
vidual differences in the ability to persist in the face of setbacks (Bhanji 
et al., 2016; Bhanji and Delgado, 2014; see Method 2.7 for task details). 
We firstly confirmed the clinical relevance of this measure by contrast-
ing it across the POUD and control groups via 2-sample ttest. Persistence 
was significantly lower for POUD versus control subjects, reflecting the 
former group’s reduced willingness to persist in the face of setbacks: 
POUD group mean persistence = 41.3%, control group mean = 59.2%; t 
(36) = 2.58, p = .014, Cohen’s d = 0.85. This supports the presence of 
dysfunctional persistence behavior in the POUD subjects, which we 
attempted to capture via our multivariate predictive modeling 
approach. 

Behavioral prediction accuracy for models trained on the same 4 
feature sets used in the classification analyses are presented in Fig. 3 (see 
Method 2.7 for modeling details). Depicted are scatterplots for each 
model along with the Pearson correlation (r) and the mean absolute 
error (MAE) between predicted and actual persistence behavior across 
subjects, which quantified model performance. Inspection of Fig. 3 
conveys that individual differences in clinically relevant persistence 
behavior were reliably modeled using MRI features. Comparison of the 
numerical differences in prediction accuracy across feature sets revealed 
a similar pattern to the ML classification results: prediction accuracy was 
clearly non-significant for the “sMRI subcortex” model, marginally non- 
significant for the “sMRI only” model and clearly significant for the 
“restFC only” model5. However, the multi-modal “combined” model 
once again numerically outperformed all uni-modal prediction accu-
racies (r change = 0.34, 0.12 and 0.03 respectively). 

As expected, prediction accuracy was numerically lower for the 
“restFC only” and “combined” models if the maximum number of PCs 
were used in model training (likely due to overfitting; see Method 2.7 for 
details), yet both remained significant: restFC maxPC r = 0.37, p = .022, 
MAE = 0.85, R squared = 0.06; combined maxPC r = 0.33, p = .041, 
MAE = 0.80, R squared = 0.08. Indeed, highlighting the robustness of 
the model accuracies, all 4 relevant p values (restFC only/combined ×
maxPC/PC10) survived Holm-Bonferroni familywise error correction for 
experimenter degrees of freedom in varying the number of retained PCs 
(corrected alpha = 0.05). To further demonstrate robustness, we also 
reran the combined predictive model using an alternative k-folds 
crossvalidation scheme (see Method 2.7 for details), and obtained a 
similar pattern of results: k-folds maxPC r = 0.39, p = .019 (remains 
significant after Holm-Bonferroni correction), MAE = 0.75, R squared =
0.13; k-folds PC10 r = 0.31, p = .070, MAE = 0.79, R squared = 0.08. 

Overall, our results highlight the efficacy of multivariate predictive 
modeling approaches in capturing individual differences in persistence 
behavior, which were demonstrated to be clinically relevant to POUD. 
Paralleling our ML classification results, multi-modal feature sets once 
again yielded the numerically highest prediction accuracy compared to 
uni-modal feature sets. 

3.8. Head motion control analyses 

Given widely documented concerns over head motion confounding 

MRI-based multivariate classification and behavioral modeling results 
(Rao et al., 2017; Siegel et al., 2017; Todd et al., 2013), we conducted a 
series of analyses to rigorously probe such influences. Note that partial 
mitigation of head motion artifacts was already achieved for the main 
results via removal (i.e. “scrubbing”, Power et al., 2014) of high motion 
timepoints and nuisance regression of motion estimates during pre-
processing (see Method 2.4 for details). To probe any residual influence 
of head motion on the multivariate ML classification results, we 
computed the Spearman correlation between actual group status (1 =
POUD, 0 = control) and the mean framewise displacement (FD) across 
each subject’s resting-state session. This yielded a non-significant rela-
tionship: rho = 0.28, p = .072. To conclusively remove the influence of 
head motion, we also regressed out the mean FD across subjects from 
each input feature prior to rerunning the “combined” classification 
model (following e.g. Rao et al., 2017; Todd et al., 2013). The resulting 
classification accuracy was numerically lower than the main “com-
bined” model, but remained statistically significant: 61.9% mean clas-
sification accuracy, 61.9% POUD sensitivity, 61.9% control specificity; 
p = .029, null mean = 49.8%. 

A similar approach was taken to probe the influence of head motion 
on the predictive modeling results. The Spearman correlation between 
behavioral persistence and mean FD across subjects was clearly non- 
significant: rho = -0.15, p = .375. Regressing out mean FD from each 
feature prior to running the “combined” predictive model again yielded 
statistically significant (albeit slightly numerically reduced) model 
performance: r = 0.38, p = .020, MAE = 0.76, R squared = 0.13. 

Hence, whilst regressing out head motion from multi-modal features 
reduced prediction accuracy for both the multivariate ML classification 
and predictive behavioral models, this operation did not affect the re-
covery of significantly above-chance model performance. This rules out 
the possibility that head motion was predominantly driving the efficacy 
of the multivariate models (Laumann et al., 2016; Power et al., 2014). 
Note also that the observed reduction in model performance might also 
result from discarding cognitively/clinically relevant trait information 
that is likely associated with head motion (e.g. task engagement; Zeng 
et al., 2014). 

4. Discussion 

Our findings demonstrate the sensitivity of structural and functional 
MRI measures to long-term neural effects of prescription opioid addic-
tion. Despite the severe individual and societal burden of POUD, func-
tional neuroimaging investigations in this clinical group have remained 
scarce. To rectify this, we employed univariate and multivariate (ma-
chine learning) approaches to discriminate POUD characteristics on the 
basis of structural (sMRI morphometric) and functional (restFC) infor-
mation. Importantly, we only included long-term POUD subjects that 
had been detoxified and that were not concurrently experiencing 
chronic pain or serious physical or psychiatric comorbidity, thereby 
avoiding a number of potential confounding influences on our brain 
imaging measures. Of the univariate analyses conducted, we observed a 
statistically reliable reduction in subcortical integrity in POUD 
compared to healthy controls. This effect was maximal in the NA (i.e. 
ventral striatum) and dorsal striatum (see Fig. 1a). The striatum has long 
been implicated in the cellular action profile following opioid con-
sumption (Cunha-Oliveira et al., 2008; Volkow et al., 2003), with 
dopamine release in this region serving as the endpoint of intracellular 
events triggered by the endogenous opioid system (Compton et al., 
2016; Volkow et al., 1999). Critically, findings from animal models 
suggest that repeated modulation of this system over long-term opioid 
use can lead to structural changes, such as decreased dendritic spine 
density (Liao et al., 2005), lower dopamine D2 receptor availability 
(Zijlstra et al., 2008), and apoptosis of brain neurons and microglia (Hu 
et al., 2002). Such cellular changes plausibly underpin the striatal 
structural loss observed here, with previous human neuroimaging 
studies reporting similar sMRI changes (McConnell et al., 2020) even 

5 Note that all significant behavioral prediction accuracies depicted in Fig. 3 
(restFC only and combined models) survived familywise error correction across 
the 4 feature set models (via Holm-Bonferroni, corrected alpha=0.05). 
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after just one month of opioid use (Lin et al., 2016; Younger et al., 2011). 
It remains unclear whether this structural loss results from direct 
neurotoxic impacts of chronic drug ingestion (Cunha-Oliveira et al., 
2008) and/or cognitive processes relating to negative reinforcement 
that perpetuate cycles of addiction (Kibaly et al., 2019; Stewart et al., 
2019). Nevertheless, our results converge with previous reports in sug-
gesting reduced subcortical structural integrity, most prominent in the 
dorsal and ventral striatum (NA), as a large-scale neural substrate of 
long-term opioid addiction. 

Unlike the subcortical sMRI analyses, univariate analyses of both 
cortical sMRI and whole-brain fMRI restFC failed to reliably discrimi-
nate between the POUD and control groups at standard statistical 
thresholds. For the cortical sMRI analyses, the observed non-significant 
main effect of group status is anticipated by previous reports of mixed 
patterns of increase and decreases in gray matter volume across cortical 
regions in opioid users (Lin et al., 2016; Younger et al., 2011). However, 
region-specific contrasts also failed to recover a significant group dif-
ference even at uncorrected thresholds, revealing a general lack of 
sensitivity in univariate detection of cortical structural changes. Our 
results partially align with a previous report employing univariate ap-
proaches that also found significant loss of structure in subcortical 
(amygdala) but not cortical regions for POUD subjects (Upadhyay et al., 

2010). Our failure to observe significant univariate differences in restFC 
is also in keeping with the pattern in previous opioid addiction studies; 
whilst connectivity changes involving similar drug cue-related regions 
as in the present report have been documented, the sign of these changes 
has alternated inconsistently (Ieong and Yuan, 2017). This is consistent 
with the recent findings of Spronk and colleagues (Spronk et al., 2020), 
who reported subtle univariate alterations in restFC across multiple 
mental disorders. It is possible that with access to comparably large 
samples as used by Spronk et al (clinical groups ranged from 59 to 90 
subjects) the resultant increase in statistical power could have yielded 
significant connectivity differences in the present report. We elaborate 
on limitations associated with our small sample in a later paragraph. 

Nevertheless, even in this limited sample, our multivariate ML 
classification analyses were overall more successful, recovering signifi-
cantly above-chance group classifications for both uni-modal sMRI and 
restFC feature sets. In addition to showing significant classification ac-
curacy from restFC features that did not yield significant univariate 
differences, we also demonstrated that the sMRI classifications benefited 
from inclusion of cortical features that also failed to recover univariate 
differences (via comparison of “sMRI only” and “sMRI subcortex” ac-
curacies in Fig. 2). This suggests that long-term effects of opioid use are 
reflected in the multivariate pattern amongst subcortical and cortical 

Fig. 3. Combined multivariate model yielded the highest accuracy in predicting persistence behavior. Depicted are the model-predicted versus actual 
persistence behavior across subjects, for the following models: A) sMRI only, B) sMRI subcortex, C) restFC only, and D) combined (multi-modal: sMRI and restFC 
features). Across panels, predicted and actual behavioral scores were zscored in non-circular fashion as part of model estimation (see Method 2.7 for details). Pearson 
correlation (r) values capturing the predicted-to-actual overlap (model accuracy) with accompanying p values are provided, along with the mean absolute error 
(MAE) and linear lines of best fit. Asterisks denote significant prediction accuracy at p < .05. Note that the accompanying R squared (coefficient of determination) 
values for panels A-D are -0.06, -0.09, 0.14 and 0.16 respectively. 
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morphometric measures, as well as restFC. The fact that non-significant 
univariate information can still have discriminative utility in a multi-
variate classification approach highlights the greater sensitivity of the 
latter class of methods (Hebart and Baker, 2018; Jimura and Poldrack, 
2012). When considered with the greater viability of translating ML 
classification approaches towards making individualized predictions in 
the clinic (compared to univariate methods), we hope that our pre-
liminary results can spur future applications of such approaches in 
POUD. 

In guiding these future extensions, we demonstrated the particular 
efficacy of combining feature sets across sMRI and restFC modalities. 
The resulting “combined” classifier numerically outperformed all other 
uni-modal classifiers, and this held across a number of control analyses 
(including randomised sampling of the larger POUD group, and 
confound regression of motion estimates). Despite the dearth of ML 
classification analyses applied to opioid disorders, general support for 
the superiority of multi-modal approaches comes from Alzheimer’s 
disease research (Adamczuk et al., 2015; Liu et al., 2018; Rathore et al., 
2017; Zhang et al., 2011a). Given that this subdomain of clinical 
neuroscience has witnessed the greatest volume of ML applications, its 
convergence towards multi-modal feature sets should be harnessed to 
expedite developments in the more nascent field of opioid use, and 
addiction generally. The superiority of multi-modal compared to uni- 
modal feature sets might arise from the different but complementary 
“perspectives” of POUD-related neural dysfunction captured by distinct 
modalities (Liu et al., 2018; Zhang et al., 2011b). Another compatible 
explanation is that incorporating multi-modal features from separate 
scan sequences likely mitigates the influence of artifacts that are specific 
to a given modality. This increases the likelihood of classification al-
gorithms identifying multivariate patterns that reflect cognitively and 
clinically relevant information. 

The benefit of multi-modal feature sets was also apparent in the final 
set of analyses targeting multivariate prediction of a continuous 
behavioral variable (persistence in goal pursuit; Bhanji et al., 2016). The 
highest prediction accuracy was again obtained for a “combined” (sMRI 
and restFC) model, which survived rigorous correction for possible head 
motion confounds. More generally, these analyses extended the multi-
variate ML classifications of group status towards modeling of clinically 
relevant behavior. This link to behavior has been previously highlighted 
as a critical step in developing clinically useful biomarkers from func-
tional neuroimaging measures (Mill et al., 2020; Rosenberg et al., 2016; 
Woo et al., 2017). It is also worth highlighting the distinction between 
our present “predictive” approach (testing on held-out subjects) versus 
“associative” approaches (e.g. correlating imaging and behavioral 
measures in the full sample) that have been predominantly applied in 
the study of opioid addiction. Whereas the latter approach risks over-
fitting by testing a model on the same data used to train it, the former 
predictive approach avoids this by testing on held-out data, thereby 
deriving more generalizable brain-behavior models (Shen et al., 2017). 

This ability to generate predictions for held-out subjects again sug-
gests potential applications in the clinic, and it is worth noting that 
reliable classifications of group status and modeling of persistence 
behavior was achieved with just 20 min of total scan time (sMRI and 
restFC). The use of a resting-state fMRI session is particularly appealing 
as it leads to greater subject compliance than task fMRI, with the latter 
imposing lengthier instructions and/or task training in a sample that 
already poses challenges for recruitment and within-scanner compli-
ance. Beyond these practical benefits, our success in using restFC in-
formation to improve clinically relevant group classification and 
behavioral modeling (compared to the uni-modal sMRI models) theo-
retically attests to the cognitive and clinical relevance of restFC (Mill 
et al., 2020; 2017). 

However, we must emphasize the preliminary nature of the present 
findings and acknowledge a number of limitations. Firstly, although our 
sample size of POUD subjects was larger than the majority of previous 
POUD reports, it remained objectively small. Issues with predictive 

modeling in small samples have been raised recently for both ML clas-
sification (Poldrack et al., 2019) and behavioral modeling (Marek et al., 
2020) approaches. Future research should aim to rectify the dearth of 
large samples in POUD (and addiction research more generally), albeit 
noting the inherent challenges in recruiting this specific clinical group. 
To this end, consortium attempts to recruit large samples of POUD 
through coordination across multiple scanner sites would be useful. A 
larger sample would also enable more rigorous testing of the signifi-
cance of observed accuracy differences between feature set models, via 
permutation or subsampling approaches. This formal testing was not 
undertaken in the present report and hence model accuracy differences 
were consistently described as “numerical” rather than “statistically 
significant”. A second limitation was the low duration of resting-state 
fMRI data collected per subject (6 min). Recent studies have high-
lighted improved detection of individualized (trait) aspects of restFC 
with greater amounts of resting-state data per subject (greater than30 
min; Gordon et al., 2017; Gratton et al., 2018). This relates to a third 
limitation of the present study: all model performance effect sizes, 
despite being statistically reliable, numerically fell far below prevalent 
guidelines for clinical utility (i.e. 80% classification accuracy and 80% 
predicted-to-actual behavioral overlap). Future extensions of our ML 
approaches should strive for improved model performance, which 
should be aided by collecting more rest data per subject. Whilst we 
purposely used simple linear classification and predictive modeling 
approaches for this first foray into POUD, it is possible that more 
intensive nonlinear modeling approaches would improve classification 
accuracy, albeit with a potential loss of interpretability (Woo et al., 
2017). Finally, improved modeling on the basis of restFC features might 
also be achieved by exploring more advanced functional connectivity 
estimation methods, with greater causal validity than Pearson correla-
tion (Mill et al., 2017; 2016;; Reid et al., 2019). 

Considering these limitations, we interpret the present findings as 
constituting a theoretical proof-of-concept that lays the foundation for 
future MRI investigations of POUD. The present report supplements 
previous insights into cognitive changes associated with long-term 
opioid addiction (Baldacchino et al., 2012) with insight into accompa-
nying neural changes. An integrated theoretical account of both cogni-
tive and neural underpinnings of opioid addiction will be critical in 
improving current treatment limitations, as indexed by the high relapse 
rate. In the long-term extension of our modeling approaches towards a 
useful clinical protocol, not only do the afore-mentioned targets for 
model accuracy (80%) need to be met, but the modeling should also 
target more clinically useful predictions. This will critically depend on 
the availability of longitudinal data for POUD subjects. Such follow-up is 
planned in the present sample, and would enable investigation of 
whether MRI features at the presently assessed timepoint 1 (upon 
admission to a rehabilitation program) are able to predict clinical out-
comes (e.g. relapse rate) at a later timepoint 2. If successful, prospective 
modeling on the basis of subjects’ neuroimaging profiles (“biotypes”, 
Drysdale et al., 2017) would have clear clinical utility as a basis for 
tailoring POUD treatment and monitoring programs to individual pa-
tients. Future neuroimaging studies in POUD will therefore be critical in 
extending our preliminary findings from the lab to the clinic. 
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