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Abstract 
Visual shape completion recovers object size, shape, and position from sparsely segregated 

edge elements.  Studies of the process have largely focused on occipital cortex, but the role of 

other cortical areas and their functional interconnections remains poorly understood.  To reveal 

the functional networks, connections, and regions of shape completion across the entire cortex, 

we scanned (fMRI) healthy adults during rest and during a task in which they indicated whether 

four pac-men formed a fat or thin illusory shape (illusory condition) or whether non-shape-

forming pac-men were uniformly rotated left or right (fragmented condition).  Task activation 

differences (illusory-fragmented), resting-state functional connectivity, and multivariate pattern 

analyses were performed on the cortical surface using 360 predefined cortical parcels (Glasser 

et al., 2016) and 12 functional networks composed of such parcels (Ji et al., 2019).  Brain activity 

flow mapping (“ActFlow”) was used to evaluate the utility of resting-state connections for shape 

completion.   Thirty-four parcels scattered across five functional networks were differentially 

active during shape completion.  These regions were densely inter-connected during rest and a 

plurality occupied the secondary visual network.  Posterior parietal, dorsolateral prefrontal, and 

orbitofrontal regions were also significant in the dorsal attention and frontoparietal networks.  

Functional connections from the dorsal attention network were key in modeling the emergence 

of activation differences (via ActFlow) in the secondary visual network and across all remaining 

networks.  While shape completion is primarily driven by the secondary visual network, dorsal-

attention regions are also involved, plausibly for relaying expectation-based signals about 

contour shape or position to ventral object-based areas. 
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Significance Statement:  Visual shape completion is a fundamental process that combines 

scattered edge elements into unified representations of objects.   The process has been 

extensively investigated in humans and animals, but neural studies have focused on lateral 

occipital and early visual regions with scant regard to given other parts of cortex or their 

functional interconnections.  Here, we employed recent methods in network neuroscience and 

functional MRI to show that visual shape completion modulates a densely interconnected set of 

cortical regions; these primarily occupy the secondary visual network but may also be found in 

four other networks.  Dorsal attention regions played a surprisingly prominent role in modeling 

activity within secondary visual network and across all remaining networks during shape 

completion.   
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Introduction 
Visual shape completion recovers object shape, size, position, and numerosity from the relative 

alignments and orientations of spatially segregated edges.  Converging evidence from human 

and non-human primates indicates that shape completion critically relies on V1, V2, V4, and 

lateral occipital cortex (LO), with feedback cascading from the latter two regions.  For example, 

transcranial magnetic stimulation (TMS) applied earlier to LO (100-122 ms) or later over V1/V2 

(160-182 ms) worsened discrimination of completed shapes (Wokke et al., 2013).  In single-cell 

recordings, deep layer V2 cells responded ~100 ms post-stimulus onset and deep layer V1 cells 

responded at ~120-190 ms (Lee and Nguyen, 2001).  Multielectrode array recordings of V4 

revealed differential activity for completed shapes within ~150 ms and this was claimed to 

plausibly precede early visual activations (Cox et al., 2013 p.17099). Two photon calcium 

imaging in mouse has also shown that edge integration relies on long-range horizontal excitatory 

connections between V1 pyramidal cells (Iacaruso et al., 2017 p.451). These four regions—V1, 

V2, V4, and LO—have been termed the “classical” regions of shape completion (Keane, 2018) 

given their inter-connectedness and well-established role in the process.    

To what extent do other regions participate in shape completion?  At present, there is no 

consensus.  Fusiform gyrus (Larsson et al., 1999a; Halgren et al., 2003) and V3B/KO have been 

implicated, although the latter has been found mainly, but not exclusively, with dynamic illusory 

contour stimuli (Kruggel et al., 2001).  Monkey IT is more active during Kanizsa shape perception 

(see also, Huxlin et al., 2000; Sáry et al., 2008), however, this region is plausibly a human LO 

homologue (Orban et al., 2004).  In one intriguing magnetoencephalography (MEG) study, adults 

passively viewed briefly presented pac-man stimuli (30 ms) with or without illusory contours; 

differential orbitofrontal cortex (OFC) occurred at 340 ms post stimulus onset (Halgren et al., 

2003).  The OFC effect has not been replicated perhaps because older fMRI studies had coarser 

spatial resolution, more partial voluming, and thus more signal drop-out near the sinuses (due 

to magnetic field inhomogeneities).   

A problem is that many previous studies were conducted 10 to 20 years ago, with the last 

comprehensive review published in 2006 (Seghier and Vuilleumier, 2006).  Earlier studies had 

fewer participants, less powerful magnets, larger voxel sizes (with partial voluming) and an 

inclination to focus on occipital cortex.   Many were performed on expert psychophysical 
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observers or undergraduates (or both) and therefore were less likely to represent the general 

population (Henrich et al., 2010).   Finally, and perhaps most critically, no work to our knowledge 

has examined the cortex-wide functional connections of shape completion.   

Given these gaps in knowledge, our goal was to build upon foundational studies using 

more recent methods, a larger and more diverse participant sample, and an established shape 

completion task that has been described via psychophysics, fMRI, EEG, and TMS and that relies 

on the classical brain regions just mentioned (Gold et al., 2000; Pillow and Rubin, 2002; Murray 

et al., 2006; Keane et al., 2007; Wokke et al., 2013).  We employed a multiband pulse sequence 

(with higher spatial/temporal resolution), a cortex-wide surface-based analysis (with better 

anatomical accuracy, Glasser et al., 2013), and a parcellation schema and network partition to 

dramatically reduce the number of statistical comparisons.  We additionally used resting-state 

functional connectivity (RSFC) and brain activity flow mapping (“ActFlow”) to assess the 

pathways that connect regions during shape completion.  This last approach is justified since 

task and rest generate highly similar brain-wide functional connectivity (Cole et al., 2014; Krienen 

et al., 2014) and since integrating RSFC into ActFlow has yielded accurate predictions of the 

movement of task-evoked activations between brain regions (Cole et al., 2016).  

   

Materials and Methods 
Participants.  The sample consisted of healthy controls who participated in a larger 

clinical study on the neural basis of abnormal visual perceptual organization in schizophrenia 

and bipolar disorder.  These results are thus considered a first step in identifying how the brain 

represents—or fails to represent—visually completed shapes. The healthy sample comprised 

20 psychophysically naïve participants (2 left handed, 8 females) with an average age of 37.6 

and a racial composition of 35% African American, 10% Asian, 35% Caucasian, 15% mixed, 

and 5% unknown. A quarter of the participants were of Hispanic ethnicity. To obtain a more 

representative sample, we preferentially recruited controls without four-year college degrees, so 

that the average number of years of education was 14.8.   

The inclusion/exclusion criteria were: (1) age 21-55; (2) no electroconvulsive therapy in 

the past 8 weeks; (3) no neurological or pervasive developmental disorders; (4) no drug 

dependence in the last three months (i.e., participants must not have satisfied more than one of 

the 11 Criterion A symptoms of DSM-5 substance use disorder in the last three months); (5) no 
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positive urine toxicology screen on the day of testing; (6) no brain injury due to accident or illness 

(e.g., stroke or brain tumor); (7) no amblyopia (as assessed by informal observation and self-

report); (8) visual acuity of 20/32 or better (with corrective lenses if necessary); (9) the ability to 

understand English and provide written informed consent; (10) no scanner related 

contraindications (no claustrophobia, an ability to fit within the scanner bed, and no non-

removable ferromagnetic material on or within the body); (11) no positive urine drug toxicology 

screen or breathalyzer test on the day of the scan; (12) no DSM-5 diagnosis of any psychotic or 

mood disorder; (13) no current psychotropic- or cognition-enhancing medication; (14) no first-

degree relative with schizophrenia, schizoaffective, or bipolar disorder (as indicated by self-

report).    

Assessments.  Psychiatric diagnosis exclusion was assessed with the Structured 

Clinical Interview for DSM-5 (SCID) (APA, 2000; First et al., 2002). Intellectual functioning of all 

subjects was assessed with a brief vocabulary test that correlates highly (r=0.80) with WAIS-III 

full-scale IQ scores (Shipley et al., 2009, p. 65; Canivez and Watkins, 2010). Visual acuity was 

measured with a logarithmic visual acuity chart under fluorescent overhead lighting (viewing 

distance = 2 meters, lower limit =20/10), and in-house visual acuity correction was used for 

individuals without appropriate glasses or contacts. Written informed consent was obtained from 

all subjects after explanation of the nature and possible consequences of participation.  The 

study followed the tenets of the Declaration of Helsinki and was approved by the Rutgers 

Institutional Review Board.  All participants received monetary compensation and were naive to 

the study’s objectives. 

 
Experimental Design and Statistical Analysis 

Behavioral paradigm selection. Visual shape completion was investigated via a well-

documented “fat/thin” discrimination paradigm in which subjects indicated whether an illusory 

Kanizsa square was fat or thin (“illusory” task) or whether four non-contour-forming pac-men 

were uniformly rotated left or right (“fragmented” task) (Ringach and Shapley, 1996).  We 

define visual shape completion as the difference (in performance or activation) between the 

two task conditions.  The fragmented task is a suitable control in that it requires judging the 

lateral rotational properties of the four pac-man, just like the illusory task.  The two tasks also 

rely on a suite of common mechanisms for: (1) learning two response alternatives from a 
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limited number of practice exemplars and instructional screens (novel task learning); (2) 

transferring the learned alternatives to long term memory (consolidation); (3) attending to four 

discrete spatial regions (divided attention); (4) continuously monitoring the display over specific 

trial intervals (temporal attention); (5) capturing and extracting spatial information from briefly 

presented arrays (visual short term memory); (6) discerning fine-grained orientation differences 

(orientation perception); and (7) repeating the foregoing processes over the task duration 

(sustained motivation) (Keane et al., 2019).  Perhaps because of these similarities, the two 

tasks are highly correlated behaviorally (Keane et al., 2019) and generate similar performance 

thresholds (Keane et al., 2014), which should not be taken for granted given that many visual 

tasks are uncorrelated (Grzeczkowski et al., 2017).  In sum, by having employed a closely 

matched and already-tested control condition, we are in a position to identify mechanisms 

relatively unique to shape completion.   

Stimulus and procedure. Subjects viewed the stimulus from a distance of 99 cm by way 

of a mirror attached to the head coil. There were four white sectored circles (radius = .88 deg, 

or 60 pixels) centered at the vertices of an invisible square (side = 5.3 deg, or 360 pixels), 

which itself was centered on a gray screen (RGB: 127; see Figure 3).  Stimuli were initially 

generated with MATLAB and Psychtoolbox code (Pelli, 1997) with anti-aliasing applied for 

edge artifact removal.  Images were subsequently presented in the scanner via PsychoPy 

(version 1.84; (Peirce, 2007) and a MacBook Pro laptop. Illusory contour formation depended 

on the geometric property of “relatability” (Kellman and Shipley, 1991): when the pac-men 

were properly aligned (relatable), the illusory contours were present (the “illusory” condition); 

when misaligned (unrelatable), they were absent (“fragmented” condition).  A fixation point 

appeared at the screen center on each trial and subjects were instructed to keep fixated 

throughout. 
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Fig. 1. Stimuli, trial sequence, and block arrangement for the visual shape completion experiment. (A) 

Sectored circles (pac-men) were oriented to generate visually completed shapes (illusory condition) or 

fragmented configurations that lacked interpolated boundaries (fragmented condition).  There were two 

difficulty conditions corresponding to the amount by which the pac-men were individually rotated to 

create the response alternatives. (B) After briefly seeing the target, subjects responded. (C) Each half 

of a run consisted of a fixation screen, a 5 second instructional screen, 25 trials of a single task 

condition (including 5 fixation trials), and then another fixation screen. 

 

Within each of the four runs, there was one block of each task condition.  In the illusory 

block, subjects indicated whether four pac-men formed a fat or thin shape; in the fragmented 

block, subjects indicated whether four downward-facing pac-men were each rotated left or right 

(see Fig. 1).   Block ordering (illusory/fragmented or vice versa) alternated from one run to the 

next.  Each block had two difficulty levels, corresponding to the magnitude of pac-man rotation 

(+/- 10 degrees “easy”, or +/- 3 degrees of rotation, “hard”).  Within each block there were 20 

task trials and 5 fixation trials. Half of the task trials were easy, and half were hard; half of 

these two trial types were illusory, and half were fragmented.  The ordering of these trial types 

(including fixation) was counterbalanced. Each trial consisted of a 250 ms pac-man stimulus 
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(task trial) or 250 ms fixation dot (fixation trial), followed by a 2750 ms fixation dot.  Subjects 

needed to issue a response before the end of a task trial; otherwise, a randomly selected 

response was assigned, and the following trial ensued.  Feedback was provided at the end of 

each run in the form of accuracy averaged cumulatively across all test trials. 

Subjects received brief practice outside of and within the scanner before the actual 

experiment. To ensure that subjects thoroughly understood the task, pictures of the fat/thin 

stimuli were shown side-by-side and in alternation so that the differences could be clearly 

envisaged.  Subjects issued responses with a two-button response device that was held on 

their abdomens with their dominant hand; subjects practiced with this same type of device 

outside of the scanner facility. Feedback after each trial was provided during the practice only 

(indicating correct, incorrect, or slow response). 

fMRI acquisition. Data were collected at the Rutgers University Brain Imaging Center 

(RUBIC) on a Siemens Tim Trio scanner. Whole-brain multiband echo-planar imaging (EPI) 

acquisitions were collected with a 32-channel head coil with TR = 785 ms, TE = 34.8 ms, flip 

angle = 55°, bandwidth 1894/Hz/Px, in-plane FoV read = 211 mm, 60 slices, 2.4 mm isotropic 

voxels, with GRAPPA (PAT=2) and multiband acceleration factor 6.   Whole-brain high-resolution 

T1-weighted and T2-weighted anatomical scans were also collected with 0.8 mm isotropic 

voxels.  Spin echo field maps were collected in both the anterior to posterior and posterior to 

anterior directions in accordance with the Human Connectome Project preprocessing pipeline 

(Glasser et al., 2013).  “Dummy” scans were acquired at the beginning of each run to allow the 

brain to reach steady-state magnetization.  Excluding dummy volumes, each experimental 

functional scan spanned 3 min and 41 s (281 TRs) and were collected consecutively with short 

breaks in between (subjects did not leave the scanner).  An additional 10 minute resting-state 

scan (765 TRs) occurred in a separate session, with the same pulse sequence. 

fMRI preprocessing. Imaging data were preprocessed using the publicly available 

Human Connectome Project minimal preprocessing pipeline which included anatomical 

reconstruction and segmentation, EPI reconstruction, segmentation, spatial normalization to 

standard template, intensity normalization, and motion correction (Glasser et al., 2013).  All 

subsequent preprocessing steps and analyses were conducted on CIFTI 64k grayordinate 

standard space.  This was done for the parcellated time series using the Glasser et al. (2016) 

atlas (i.e., one time series for each of the 360 cortical parcels).  An advantage of the Glasser 
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parcellation is that it provides a principled and powerful way to determine what other regions 

may be critically involved in visual shape completion (versus a whole-brain vertex-wise analysis). 

The surface-based cortical parcellation combined multiple neuroimaging modalities (i.e., myelin 

mapping, cortical thickness, task fMRI, and RSFC) to improve confidence in cortical area 

assignment.  An average BOLD time course for each parcel was calculated by averaging across 

all vertices within that region. To conduct a specific follow-up MVPA analysis within V1 and V2 

parcels (see Results), we also performed an otherwise identical preprocessing pipeline on the 

vertex-wise data.  In all cases, we performed nuisance regression on the minimally preprocessed 

task data using 24 motion parameters (6 motion parameter estimates, their derivatives, and the 

squares of each) and the 4 ventricle and 4 white matter parameters (parameter estimates, the 

derivates, and the squares of each) (Ciric et al., 2017).  For the task scans, global signal 

regression, motion scrubbing, spatial smoothing, and temporal filtering were not used.  Each run 

was individually demeaned and detrended (2 additional regressors per run).   

The resting-state scans were preprocessed in the same way as the parcellated data 

(including the absence of global signal regression) except that we removed the first five frames 

and applied motion scrubbing (Power et al., 2012).  Whenever the framewise displacement for 

a particular frame exceeded 0.3 mm, we removed that frame, one prior frame, and two 

subsequent frames (Schultz et al., 2018).  Framewise displacement was calculated as the 

Euclidean distance of the head position in one frame as compared to the one preceding.   

Functional and anatomical scans were visually inspected for quality.  In addition, an MRI 

quality control package (“MRIQC”) and an accompanying random forest classifier were used to 

confirm that all T1 anatomical scans were artifact free (Esteban et al., 2017).   (Two other 

participants, not included in our analyzed sample, had been flagged by MRIQC as having low 

quality T1 scans.)   The mean framewise displacement across scans before motion correction 

or scrubbing was remarkably similar in the visual completion and rest scans: 0.142 mm for visual 

completion (averaged across scans) and 0.143 mm for rest. The average number of frames 

remaining after scrubbing for the rest scan was 696 [range: 548-760]. 

For the task scans, there were 6 task regressors, one for each instructional screen 

(illusory/fragmented) and one for each of the four trial types (illusory/fragmented, easy/hard).  A 

standard fMRI general linear model (GLM) was fit to task-evoked activity convolved with the 

SPM canonical hemodynamic response function (using the function spm_hrf.m).  Betas for the 
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illusory and fragmented condition were derived from all trials of the relevant condition across all 

four runs.  For the classifier analyses, described below, task activation betas were derived 

separately for each run, but all other steps were the same as described.   

 

Analyses  

Analyses were performed with RStudio (Version 1.2.1335) and MATLAB R2018b; cortical 

visualizations were created with Workbench (version 1.2.3).  There were eight parcels of a 

priori interest in each hemisphere.  These ROIs have been given different names in different 

research studies (shown in parentheses) and are as follows: V1 (17, hOC1, OC, BA17), V2 

(18, hOC2, OB, BA18) , V4 (V4d, V4v, hV4, hOC4v, hOC4lp), V4t (LO2), LO1 (LO2, hOC4la); 

LO2 (LO1, hOC4la), LO3 (hOC4la), and V3CD (V3A,V3B, hOC4la) (Glasser et al., 2016 p.81 

see of Supplementary Neuroanatomical Results). Note that V3CD was included because it 

corresponds to the anterior third of the middle and inferior lateral occipital gyri (area hOc4la as 

labeled by Malikovic et al., 2016).  Statistical correction, when applied, was via the False 

Discovery Rate (FDR) method (Benjamini and Hochberg, 1995).  For the univariate task 

activation analysis, regions that were and were not of a priori interest were separately FDR-

corrected.  (Statistical correction is indicated explicitly in the text below, e.g., via pcorr values). 

For the group-level task activation analyses, betas were derived for each parcel and 

subject, averaged across difficulty condition, subtracted (illusory-fragmented), and then 

compared to zero (across subjects) with a one-sample t-test.  As a control analysis, we did the 

same as just described, except that we averaged across task condition and contrasted the 

easy/hard conditions.  Individual subject parcel-wise task activation analyses were also 

performed for the illusory/fragmented contrast (e.g., Table 1), using the subject’s estimated 

covariance matrix, task betas, and MATLAB’s linear hypothesis test function (linhyptest).  

The location and role of each parcel was considered in the context of their functional 

network affiliations.  We used a recent network partition that comprised 12 functional networks; 

these were constructed from the above-mentioned parcels and were defined via a General 

Louvain community detection algorithm using resting-state data from healthy adults (Ji et al., 

2019 see Figure 4A).  

Multivariate pattern analysis was performed on the activation betas at two levels of spatial 

granularity.  First, we examined whether 12 different functional networks could individually 
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classify task condition (illusory vs fragmented) or difficulty condition (easy vs hard) using their 

within-network mean parcel activations as features.  Next, we examined, for each parcel, 

whether vertex-wise activations could classify task condition.  MVPA classification accuracy in 

both cases was assessed via leave-two-runs-out cross validation.  For example, when 

classifying task condition for each participant, we examined whether the betas for each of the 

two left-out runs better correlated to the averaged illusory or fragmented betas of the remaining 

runs.  Note that each run contained each of the two conditions, ensuring balanced condition 

types across test and training.  Pearson correlation served as the minimum distance classifier 

(i.e., 1-r) (Mur et al., 2009; Spronk et al., 2018).  Results were averaged for each subject across 

the 6 possible ways to divide the four runs between test and validation. Statistical significance 

was determined via permutation testing, which generated a null distribution of classification 

accuracies through the same procedure with 10,000 samples. That is, for each sample, the 

“illusory” and “fragmented” labels were shuffled for each subject and run, and the classification 

results were averaged across subjects and across the 6 possible divisions of testing and 

validation data sets.   

Resting-state functional connectivity matrices.  We determined the resting-state 

functional connections for each parcel.  Specifically, for each target parcel time series, we 

decomposed the time series of the remaining (N=359) parcels into 100 components, regressed 

the target onto the PCA scores, and back-transformed the PCA betas into a parcel-wise 

vector.  The average amount of variance explained by the components across subjects was 

84% [range: 81-88%].  The RSFC computation is equivalent to running a multiple regression 

for each parcel, with all other parcels serving as regressors.  An advantage of using multiple 

regression is that it removes indirect connections (Cole et al., 2016).  For example, if there 

exists a true connection from A to B and B to C, a Pearson correlation, but not regression, 

would incorrectly show connections between A and C.  PC regression was preferred over 

ordinary least squares to prevent over-fitting (using all components would inevitably capture 

noise in the data).    

Activity flow mapping.  Figure 6 illustrates how we used resting-state data to predict task 

activation (“Activity Flow mapping” or simply “ActFlow”), where the “activations” in this case 

correspond to the illusory-fragmented difference.  For each subject, task activations in a held-

out parcel (‘j’ in Figure X) was predicted as the weighted average of the activations of all other 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 4, 2020. . https://doi.org/10.1101/2020.08.03.233403doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233403
http://creativecommons.org/licenses/by-nc-nd/4.0/


NETWORK MECHANISMS OF SHAPE COMPLETION 15 

   

 

parcels, with the weights being given by the resting-state connections.  That is, for each 

subject, each held out region’s predicted value was given as the dot product of the task 

activations in the remaining regions (‘i’ in Figure 6A) and the subject’s restFC between j and i 

(using the FC weight from the appropriately oriented regression, i.e. j as the target and i as the 

predictor). The accuracy of the activity flow predictions was then assessed by computing the 

overlap (Pearson correlation) between the predicted and actual task activation difference 

vector. Overlap can be expressed by comparing actual and predicted activations for each 

subject, and then averaging the resulting Fisher-transformed r values (rz) across subjects 

(subject-level overlap).  Statistical significance can be determined by comparing the vector of rz 

values to zero via a one-sample t-test.  Overlap can also be expressed by averaging the 

predicted values across subjects and then comparing that to the averaged actual values, which 

will yield a single Pearson r value (group-level overlap).   

 
Results 
Below, upon reporting the behavioral results, we report parcel-wise task activation analyses to 

determine the regions most associated with shape completion.  We then quantify each 

network’s contribution to shape completion by applying MVPA to within-network parcel-wise 

activation patterns for the two task conditions.  Null task activation results in V1 and V2 

prompted us to additionally apply MVPA to within-parcel vertices to probe for fine-grained 

patterns of shape completion.  To determine how parcels potentially interacted, we computed 

the resting-state functional connectomes (RSFC matrices) and then demonstrated the likely 

utility of these connections for shape completion via ActFlow.  We conclude by suggesting the 

existence of a shape completion network coalition, which is seated in the secondary visual 

network, is orchestrated by the dorsal attention network, incorporates pieces of three other 

networks, and interacts with early visual areas at a vertex-wise spatial resolution. 

 
Behavioral task performance 
Employing a 2 (task condition) by 2 (difficulty) within-subjects ANOVA (type III sum of 

squares), we found that performance was better in the fragmented than illusory condition 

(89.2% versus 82.8%, F(1,19)=14.8, p=.001).  The large rotation (“easy”) condition yielded 

better performance than the small rotation condition (F(1,19)=133, p<10-9).  The accuracy 
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difference between illusory and fragmented conditions did not depend on difficulty level, 

although there was a trend toward greater differences on the smaller rotation condition (two-

way interaction: (F(1,19)=3.6, p=.07).  No-response trials were infrequent, occurring on only 

5.5% of the trials on average. The frequency of no-response trials did not vary with difficulty 

level or task condition nor was there an interaction between difficulty and task condition 

(ps>.25). 

 
Task activation effects of shape completion across five different networks 

A  general linear model task activation analysis determined the parcels that were 

differentially active in the illusory versus fragmented condition.  Overall, there were 34 parcels 

reached significance in five different networks (Table 1).  Of these, 26 (76 percent) were more 

activated for illusory relative to fragmented trials (Figure 2).  A priori ROIs, when significant, 

were all more active relative to the control condition; these include bilateral V3CD, V4, L01, 

and left L02.  These effects were robust and would also be significant if we simply performed a 

cortex-wide FDR correction.  Notable null results were V2 and V1 which will be discussed 

further below.  Additional positively and significantly activated regions resided in the posterior 

parietal, dorsolateral prefrontal, and orbitofrontal regions; they belonged primarily to the 

secondary visual, dorsal attention, and frontoparietal networks.  All 8 of the regions that 

displayed less relative activation in the illusory-fragmented contrast belonged to the default 

mode network.   Note that this finding reflects this network’s established on-task deactivation 

profile (Anticevic et al., 2012), i.e. greater deactivation for the illusory relative to the fragmented 

condition, consistent with greater engagement in the illusory condition. 
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Fig. 2.  FDR-corrected activation difference amplitudes (Z-normalized) for all parcels for the 

illusory – fragmented contrast.  ROIs are shown with black outlines.  The anterior and posterior 

views are shown laterally; the dorsal and ventral views are shown at the top and bottom.   Hot 

colors indicate regions that were more active for the illusory versus fragmented task; cool 

colors indicate the reverse.  

 

Because task difficulty was greater in the illusory task, perhaps task difficulty, rather 

than shape completion, drove the effects just described.  We addressed this concern in two 

ways.  First, we performed a contrast comparing activation in the easy versus hard trials, 

averaged across task conditions.  To make the results comparable to before, FDR correction 

was applied separately to regions that were and were not ROIs.  We found 17 parcels that 

were differentially active, but only four overlapped with the illusory-fragmented contrast (see 

Fig. 3).  Three of these parcels were less active in both the hard-easy and illusory-fragmented 
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comparisons: right d23ab, right TGd, and right PGi; one was more active in both (right IFJp).  

None of the 16 ROIs of visual shape completion were related to task difficulty.  Thus, on this 

analysis, while the above-mentioned four parcels were confounded with task difficulty, the 

remaining 30 significant parcels in the illusory/fragmented comparison were not confounded. 

 To further assess the extent to which task difficulty might account for the 

aforementioned shape completion effects, we ran an additional analysis that was restricted to 

the 10 participants who did the best in the illusory relative to the fragmented condition, so that 

there was no longer an accuracy difference (t(9) = -0.443, p=0.669, Mean difference in 

proportion correct=-0.011).  In this sample, there was also no reaction time difference between 

task conditions (t(9)=1.63, mean RT difference=-.06 seconds, p=.14)).  As shown in Table 1, 

the ROIs that were significant in the earlier analysis remained significant in this restricted 

sample; these include L01 and V3CD in each hemisphere, left LO2 and orbitofrontal region 

(11l), and right V4 (all p<.05, uncorrected).  Of the four regions that were significant on both 

the hard/easy and illusory/fragmented contrast (right d23ab, right PGi, right TGd, right IFJp), 

only right TGd remained significant and thus is more plausibly independent of task difficulty.  

Other regions that continued to be significant are shown in Table 1.   
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Fig 3. Task activation differences for hard - easy trials.  Opposite to the illusory-fragmented contrast, 

we found that harder trials generally elicited less activation throughout the brain relative to easier trials 

and the location of these significant activations overlapped little with the activations shown in Figure 2.  

The illusory/fragmented ROIs (black outlines) are shown for comparison purposes only and did not 

contain significant parcels. 

 

To examine the robustness of the task activation effects, we additionally report the 

percentage of subjects showing significant effects (illusory-fragmented) in the group direction 

on an individual subject analysis (with a linear hypothesis test, see Methods).  This was done 

for regions that were significant on the task activation analysis as well as for other regions that 

were of a priori interest.  As can be seen from Table 1, about 80% of parcels (ranging from 70-

100%, depending on the parcel) showed activation differences in the group direction and about 

half (35 - 80%) showed effects that were statistically significant.  Intriguingly, the inferior lateral 

temporal region PH–which was not of a priori interest—was most associated with shape 

completion, with 80% showing a significant effect in the left hemisphere and 70% in the right 

hemisphere, and with at least 95% showing differences in the group direction in the left and the 

right hemispheres.  As will be shown further below (Figure 5), of all the significant visual 

regions, PH was the most densely interconnected. 

 

Parcel 
Name 

% With 
Difference 
In Group 
Direction 

% With 
Sig. 

Difference 
ROI? Network 

Sig. with 
FDR 

correction? 

Sig. with 
accuracy 
matching

? 

Sig. 
with 
Act-

Flow? 

Mean Beta 
Difference         
[95% CI] 

R_PH 100 70 0 Visual2 1 1 1 111.5 [75.6,147.5] 
L_PH 95 80 0 Visual2 1 1 1  93.2 [ 63.7,122.7] 

L_MIP 95 60 0 
Dorsal-

attention 1 1 1  80.8 [ 41.9,119.7] 
R_V4 95 55 1 Visual2 1 1 1  47.4 [ 25.7, 69.1] 

L_IFJp 90 50 0 Frontoparietal 1 1 1  87.5 [ 45.8,129.2] 
R_p9-46v 90 50 0 Frontoparietal 1 1 1  60.5 [ 27.4, 93.5] 

L_LO1 90 40 1 Visual2 1 1 1  66.7 [ 36.4, 97.1] 
R_a24 90 35 0 Default 1 1 1 -44.5 [-66.2,-22.9] 

L_V3CD 85 75 1 Visual2 1 1 1  76.1 [ 43.8,108.3] 

L_PFt 85 60 0 
Dorsal-

attention 1 1 1  60.5 [ 26.5, 94.5] 

R_IP0 85 60 0 
Dorsal-

attention 1 1 1  76.1 [ 44.7,107.6] 
R_V3CD 85 60 1 Visual2 1 1 1  67.8 [ 32.9,102.8] 

L_V4 85 55 1 Visual2 1 0 1  41.0 [ 13.6, 68.3] 
L_a24 85 55 0 Default 1 1 1 -49.5 [-73.1,-25.8] 
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R_LIPd 85 55 0 
Dorsal-

attention 1 1 1  78.8 [ 34.6,123.1] 
R_TGd 85 50 0 Default 1 1 1 -36.4 [-56.9, -16.0] 

L_IP0 85 45 0 
Dorsal-

attention 1 0 1  64.1 [ 25.3,102.8] 
R_LO1 85 45 1 Visual2 1 1 1  58.5 [ 34.4, 82.5] 
R_PGi 85 45 0 Default 1 0 1  -40.0 [-64.5,-15.4] 
R_IFJp 85 40 0 Frontoparietal 1 0 1  85.2 [ 36.5,133.8] 
L_IFSa 85 35 0 Frontoparietal 1 1 0  48.5 [ 19.3, 77.7] 
R_31pd 85 35 0 Default 1 0 1 -60.1 [-95.8,-24.4] 
L_PGi 85 30 0 Default 1 0 1 -36.8 [-60.1,-13.5] 

L_AIP 80 60 0 
Dorsal-

attention 1 1 1  76.7 [ 37.0,116.4] 
L_11l 80 55 0 Frontoparietal 1 1 1  60.6 [ 31.8, 89.4] 

R_MIP 80 55 0 
Dorsal-

attention 1 1 1  79.1 [ 37.7,120.5] 

R_6r 80 55 0 
Cingulo-

Opercular 1 1 1  53.0 [ 26.6, 79.5] 
L_V3B 80 50 0 Visual2 1 1 0  52.0 [ 19.5, 84.5] 
L_LO2 80 45 1 Visual2 1 1 1  50.4 [ 23.1, 77.7] 
R_LO2 80 45 1 Visual2 0 0 1  47.3 [  5.7, 88.8] 
L_FST 80 35 0 Visual2 1 0 1  46.7 [ 17.8, 75.5] 
L_IP2 75 60 0 Frontoparietal 1 1 1  70.9 [ 27.0,114.7] 

R_d23ab 75 30 0 Default 1 0 1 -53.9 [-88.1,-19.7] 
R_IP1 70 55 0 Frontoparietal 1 0 0  52.1 [ 21.8, 82.4] 
L_LO3 70 35 1 Visual2 0 0 1  26.6 [-12.3, 65.6] 
R_31pv 70 30 0 Default 1 0 1 -54.8 [-87.7,-21.9] 
R_LO3 70 30 1 Visual2 0 0 0  22.9 [-13.5, 59.4] 
R_V4t 70 25 1 Visual2 0 0 0  16.8 [-21.2, 54.9] 
R_V2 60 25 1 Visual2 0 0 0   3.2 [ -30.0, 36.4] 
L_V2 60 20 1 Visual2 0 0 0   7.0 [-23.4, 37.3] 
L_V1 55 30 1 Visual1 0 0 0   9.1 [-25.4, 43.7] 
R_V1 55 25 1 Visual1 0 0 0   7.0 [-28.3, 42.2] 
L_V4t 50 15 1 Visual2 0 0 0  -0.2 [-34.9, 34.5] 

 
Table 1.  Results for parcels that that were either of a priori interest or that were significant on the 

illusory-fragmented task activation analysis (see Figure 2).  The rows were sorted in descending order, 

first, by the percentage of subjects showing the effect in the group direction (column 2) and, then, by 

the percentage of subjects showing significant effects on the individual subject analysis (column 3).  

The prefix of each parcel name (“L_ “or “R_”) indicated its hemisphere.  The fourth and fifth columns 

indicate a parcel’s ROI status (yes/no) and functional network.  The next three columns indicate 

whether a parcel was significant after FDR correction, whether it remained significant when task 

conditions were matched on accuracy/RT, and whether it was significant using the predicted ActFlow 

data.  In the final column, we show the average task activation difference, with more positive values 

indicating more illusory relative to fragmented activation. 

 

A dominant role for the secondary visual network in shape completion 
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As shown in Table 1, 32% of the significant parcels were in the secondary visual 

network, which was followed by the default mode (24%), dorsal attention (21%), frontoparietal 

(21%), and cingulo-opercular networks (3%).  To better quantify the network contributions and 

compare them to one another, we trained MVPA classifiers separately for the 12 functional 

networks (Ji et al., 2019), using parcel-wise activations as features (see Methods).  After FDR 

correction (across tests for the 12 networks), the secondary visual could reliably distinguish the 

illusory and fragmented conditions (pcorr=.004, accuracy=63%), but no other network could do 

so (all pcorr>.24).  Paired t-tests showed that after FDR correction the secondary visual network 

was marginally more predictive than 8 of the remaining 11 networks (all pcorr<.10).  Note that 

there was no correlation between network classification accuracy and parcel count (r=.001, 

p=.997), suggesting that smaller networks were not unduly handicapped.  

To assess whether the classification success of the secondary visual network was 

specific to shape completion and also whether the other networks could be predictive under 

different circumstances, we additionally ran network-level classifications that distinguished 

between easy and hard trials.  Six networks came out as significant: somatomotor (pcorr=.03, 

accuracy=56%), cingulo-opercular (pcorr=.005, accuracy=60%), dorsal attention (pcorr=.007, 

accuracy=57%), language (pcorr=.03, accuracy=56%), frontoparietal (pcorr=.004, 

accuracy=60%), and posterior multimodal (pcorr=.03, accuracy=56%).  Neither of the visual 

networks were significant.  Thus our data set and analytic approach could reveal significant 

effects for a number of networks, but only the secondary visual was relevant when examining 

visual shape completion.  Taken together, these results suggest that—purely from the 

perspective of parcel-wise task activation differences—the secondary visual network played a 

robust, specific, and outsized role in shape completion. 
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Fig. 4.  (A) Functional network partition for the network-level multivariate pattern analysis.  We 

considered whether parcel-wise activation patterns in twelve cortical networks could individually classify 

task betas as deriving from the illusory or fragmented condition; these included the primary visual, 

secondary visual, somatomotor, cingulo-opercular, dorsal attention, language, frontoparietal, auditory, 

default, posterior multimodal, ventral multimodal, and orbito-affective networks.  (B) Classification 

accuracy for the illusory/fragmented and hard/easy comparisons. Networks are color coded to match 

the parcels in panel A.  The red dotted line shows chance performance, the box segments denote 

median scores, the box hinges correspond to the 25th and 75th percentiles, and the box whiskers 

extend to the largest or smallest value (but no further than 1.5x the interquartile range).  Only the 

secondary visual network could significantly predict illusory/fragmented activations.  In comparison, 

multiple networks were involved in classifying easier/harder trials, after FDR correction (*pcorr<.05, ** 

pcorr<.01).   
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Fine-grained multivariate traces of shape completion in early visual cortex  

Our task activation analyses did not reveal shape completion effects in V1 or V2, which 

were ROIs.  Because a region could conceivably encode a completed shape in the multivariate 

pattern of its constituent vertices rather than the univariate mean across them (Haynes, 2015), 

we performed MVPA on vertices within these parcels.  For completeness, we considered 

effects within all 360 parcels.  The following were significant: L_V4 (p=.02, accuracy=58%), 

L_LO2 (p=.03, accuracy =56%), L_V3CD (p=.02, accuracy=58%), R_V1 (p=.03, 

accuracy=56%), R_V4 (p=.01, accuracy=57%), and R_LO2 (p=.03, accuracy=56%).  These 

effects were not corrected for multiple comparisons but are credible given the strong prior 

evidence for their involvement (see Introduction).  Outside of the ROIs, the only region that 

was significant after FDR correction was R_PGp (p=.03, accuracy=64%).  Given the 

hemispherically similar task activations and the bilateral stimulus displays, we performed the 

same analysis as above, except that vertices were aggregated (without averaging) across 

hemisphere to increase sensitivity.  The effects were similar to before with effects for: V1 

(p=.027, accuracy=57%), V4 (p=.014, accuracy=58%), LO2 (p=.01, accuracy=58%), and LO3 

(p=.03, accuracy=56%).  For regions that were not of a priori interest, the following reached 

significance after FDR correction: PGp (pcorr<.0001, accuracy=62.9%) in the secondary visual 

network and IP1 in the frontoparietal network (pcorr=.04, accuracy=61%).  In sum, V1 but not 

V2 exhibited modest vertex-wise shape completion effects; additional ROIs (V4, LO2) and a 

new region, PGp, were also consistently significant on this analysis.   

 

Significantly activated task parcels are functionally inter-connected during rest 
We sought to determine not only what regions were modulated but also how those regions 

connected to one another.  Towards this end, a resting-state functional connectivity estimation 

was performed with the more standard Pearson correlation approach (Figure 5A) and then with 

multiple regression (Figure 5B; see Methods). The predicted parcel-wise betas of the latter 

method were compared to zero for each parcel (one sample t-test), and the FDR-corrected 

(thresholded) map is shown in Figure 5C.  After examining whole-cortex functional 

connections, we homed in on the regions that were significant on the task activation analysis 

and that remained significant when the illusory/fragmented conditions were matched on 
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accuracy/RT.  Contralateral homologues were included since the task activations were 

hemispherically symmetric.  This means that the total number of regions included in the RSFC 

matrix was 38. 

Six observations will inform the discussion below.  First, as an initial sanity check, 

informal observation of Figure 5C shows that parcels had: higher within- than between-

hemisphere RSFC, more cross-hemisphere connections for sensory (visual) than for non-

sensory networks, and high RSFC with their contralateral homologues, which is consistent with 

past work (Stark et al., 2008; Power et al., 2011).  Second, the 38 task activation regions on 

this analysis were remarkably inter-connected during rest.  After applying FDR corrections to 

each matrix separately, the restricted RSFC matrix (38 x 38) contained three times as many 

significant resting-state connections as the full (360 x 360) matrix, (39.6 % versus 13.5%).  To 

put this in perspective, two of the twelve resting-state networks—default mode and 

orbitoaffective—had a lower proportion of significant within-network connections (35% and 

25%, respectively).   This suggests that the significant task regions, despite being composed of 

five different networks, composed a densely inter-connected network coalition or supra-

network.   Note that these five networks were not unusually connected to one another: If all 

regions from all 5 networks were included in the above calculations (to form a 260 x 260 RSFC 

matrix), the total number of significant resting state connections would still only be 17%.  Thus, 

it is the specific regions within these five networks that appear to be more interconnected 

during rest.   

A third observation is that although the significant secondary visual network parcels 

were generally modular (having 4.6 times as many intrinsic relative to extrinsic network 

connections), area PH was a glaring exception, connecting to the cingulo-opercular, 

frontoparietal, and dorsal attention networks.  Fourth, as will be fleshed out further below and 

as can be gleaned from inspection of Figure 5D, when the secondary visual network did 

connect to other regions, it was most typically to dorsal attention regions.  Fifth, as is evident 

from that same Figure, the significant dorsal attention network regions had the most significant 

out-of-network connections (117 connections), suggesting a possible role for orchestrating 

activity in the remaining networks.  Finally, there appear to be a number of routes between 

frontal cortex and the mid-level vision ROIs.   Dorsal lateral prefrontal cortex (p9-46v) connects 

with MIP, IPO, and IP2 (in posterior parietal cortex), which in turn connect with all of the 
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significant ROI regions.  Intriguingly, area 11l (OFC) connected directly with area LO2.  Hence 

there exist clear routes for conceptual or value-laden information to loop back into areas most 

typically associated with visual shape completion. 
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Fig. 5. Resting-state functional connectivity (RSFC) matrices. (A) Pearson correlation between the 

resting-state time series of parcel pairs for all 360 parcels.  Parcels are sorted into previously 

established (color-coded) functional connectivity networks (Ji et al., 2019) (see also Figure 4A).  The 

block-like structure along the diagonal exemplifies the stronger connectivity within relative to between 

each network. (B) An RSFC matrix computed via multiple regression (see Methods).  The blue/red 

colors indicate the degree to which a given parcel time series was predicted by all remaining parcels. 

Note that this matrix is much sparser than the correlational matrix since it eliminates many of the 

indirect connections between parcels (Cole et al., 2016).  (C) Thresholded (FDR-corrected) resting-

state connections between regions that remained significant on the task activation analyses (see text).  

The regions are ordered first by hemisphere and then by network. Compared to the full matrix in panel 

B, this pared down matrix had about 1 percent the number of possible connections (matrix elements) 

and triple the proportion of (FDR-corrected) significant connections.  (D) Averaging the connection 

weights across hemisphere increased the proportion even further (from 40% to 53%), highlighting the 

broadly symmetric connectivity patterns. Note that one parcel, IFSa, was split between the 

frontoparietal (left hemisphere) and cingulo-opercular networks (right), and was assigned to the 

frontoparietal network in this plot since only the frontoparietal parcel was significant in the task 

activation analysis.  

 

Resting-state connections are relevant for visual shape completion 
So far, we have shown that regions that were differentially activated during visual shape 

completion were also connected during rest.  We have descriptively sketched plausible routes 

by which frontoparietal regions can communicate with mid-level vision.  However, despite 

some indirect evidence from other work (see Introduction), it remains unclear whether these 

connections in these same subjects played a mechanistic role in shape completion.  To 

address the question, we leveraged a recently-developed predictive modeling approach—

activity flow mapping (“ActFlow”)—to assess whether the multiple regression resting-state 

connections were likely instrumental in carrying the flow of activity between regions during task 

performance (Cole et al., 2016).  In this method, the activation difference (illusory minus 

fragmented) in a held-out “target” parcel was computed as the linear weighted sum of the 

activation differences in all other parcels, with the weights being given by the resting-state 

connections to the target (see Figure 6a).  This can be thought of as a rough simulation of the 

movement of task-evoked activity between brain regions that likely contributed to each brain 

region’s task-evoked activity level. This allowed us to assess whether the observed resting-
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state connections mechanistically supported the perceptual processes associated with the 

predicted task-evoked activations – in this case shape completion.  Prediction accuracy was 

gauged as the correlation between the actual and predicted activation differences. As can be 

seen in Figure 6B, the predictions were highly significant at the whole-cortex level (r=.62, p<10-

9).  If we were to first average the predicted and actual activation differences across subjects 

and then correlate those averaged values, the resulting group-level accuracy estimate would 

increase (r=.88), probably by increasing the signal-to-noise ratio (Cole et al., 2016).  We next 

applied a task activation analysis to the ActFlow predicted data (via one-sample t-tests, as 

before); these results were then compared to the original task activation results (shown in 

Figure 2).  The percentage of parcels that remained significant (sensitivity) with ActFlow was 

92%; the percentage of non-significant parcels that remained non-significant (specificity) was 

82% (see Figure 6C).  These results suggest that the observed resting-state connections 

describe the routes over which task-evoked activity flows during shape completion (controlling 

for orientation judgement). 

To assess the relevance of resting-state connections between significant task activation 

regions, we restricted activity flow mapping only to those regions and their contralateral 

homologues.  To minimize the chance of task difficulty effects, we again used only regions that 

remained significant when conditions were matched on accuracy/RT so that each held-out 

parcel’s activation was predicted by 37 other connections/parcels.  Despite cutting 90 percent 

of the connections for each parcel, the prediction accuracy estimates (r-values) across 

subjects was still high (illusory-fragmented: r=.58, p=5.8*10-8) and did not significantly differ 

(p=.36) (as assessed with a paired t-test).   Thus, ActFlow predictive accuracy did not depend 

on whether we had used all 360 regions and the full RSFC matrix or the 38 significant task 

regions and the 38x38 RSFC matrix.  This further underscores the high connectivity of these 

task regions to one another.   

 

Dorsal attention regions can model activity flow in the secondary visual network and 
across all other networks 

According to the task activation and network-wise MVPA results (Table 1 and Figure 4, 

respectively), shape completion was most undergirded by the secondary visual network.  To 

examine which other networks might plausibly contribute to the illusory/fragmented activation 
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differences in this network, we determined which other networks could improve the ActFlow 

predictions for that network, using the same significant task regions as before.  The dorsal 

attention improved the predictions for the secondary visual network (∆r≈∆rZ =.35, pcorr=.01).   

Is there a particular network that plays a dominant role in orchestrating the activity of the 

other regions?  We examined this possibility by calculating, for each subject, the ActFlow 

accuracy for all regions outside of a held-out network and considered how that accuracy 

improved—that is, how the Fisher-Z correlations increased (∆rZ)—when the held-out network 

regions were allowed to contribute (Mill et al., 2020).  This was done for each of the five 

networks, using only the significant task regions (viz., 38 regions were treated as targets for 

ActFlow in Fig 6A).  Consistent with observations from the functional connectivity matrix, the 

dorsal attention network’s contributions significantly improved predictions for the significant 

regions of all four remaining networks (∆r≈∆rZ=.13; t(18)=4.83, pcorr=.0007).  Interestingly, 

every other network—including the secondary visual—failed to influence the results on this 

analysis (all pcorr>.17).  The improvement from the dorsal attention regions was significant even 

if we were to use all 360 regions and all possible resting-state connections (rather than 

restricting to the significantly activated regions; ∆r≈∆rZ=.03; t(18)=3.60, pcorr=.007).   
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Figure 6. Activity flow mapping for visual shape completion. (A)  For each subject, the task activation 

differences (illusory-fragmented) in a held-out parcel (j) is given by the dot product between the 

activation differences in the remaining parcels (regions i) and the resting-state connection strengths 

(betas) between i and j.  (B) Unthresholded z-normalized activation differences (illusory – fragmented) 

as compared to those that were predicted via ActFlow using resting state.  (C) When a task activation 

analysis was applied to the data predicted from ActFlow, statistical significance (or lack thereof) was 
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correctly determined for 83% of the 360 parcels (see also Figure 2).  This suggests that the connection 

weights derived from resting state are reflective of the actual connections used during shape 

completion.  

 

Discussion 
Visual shape completion recovers object shape, size, position, and number from 

seemingly inconsequential edge elements dispersed across the field of view.  Previous reports 

suggest that the process relies on lateral occipital and early visual areas, but it is unknown 

what other regions might be utilized, how they are functionally connected, or what networks 

they reside within.   To shed light on the foregoing, we employed a well-validated “fat/thin” task 

in which subjects discriminated illusory or fragmented shapes.  Compared to earlier 

neuroimaging studies of shape completion, ours had a well-motivated control condition, a 

larger and more diverse subject sample, higher spatial and temporal resolution, a surface- 

rather than volume-based analysis, and a cortical parcellation schema and network partition to 

mitigate the statistical impact of multiple comparisons.  A RSFC analysis coupled with a recent 

brain activity flow mapping procedure (“ActFlow”) enabled inferences as to how task regions 

were functionally connected.  We identified a relatively small number of differentially active 

task regions that were distributed across five functional networks and that were highly inter-

connected during rest.  While the secondary visual network played a dominant role in the task 

activation analyses, dorsal attention regions were also influential in modelling task activity 

within the secondary visual network and across all remaining networks.  Below, we discuss 

these findings in more detail, provide a sketch of how these regions might interact during 

shape completion, identify potential limitations, and suggest future directions. 

 

A central role for visual networks in shape completion  

Our results confirm past work showing the centrality of visual cortex for shape 

completion.  The secondary visual network contained 32 percent of all significantly activated 

parcels and parcel-wise patterns across this network, but not other networks, could classify 

task condition.  A priori regions of interest—V4, LO1, LO2, LO3, V3CD—were all significant in 

at least one hemisphere on the task activation analysis; V4 and LO2 were all significant in at 

least one hemisphere on the vertex-wise MVPA analysis.  One surprise was area PH, which 
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was the most densely inter-connected visual region, the most consistently active parcel across 

subjects, and the most frequently significant parcel within subject.  Signal leakage or imprecise 

localization of this region could potentially explain significant activations occasionally reported 

in the immediately adjacent face complex (Larsson et al., 1999b; Halgren et al., 2003). 

The primary visual network region, V1, was significant only on a vertex-wise MVPA 

analysis.  A likely reason is that—according to a population receptive field mapping approach 

(Kok and de Lange, 2014)—the illusory shape surface region (corresponding to a portion of 

V1/V2 vertices) is more activated in V1 relative to baseline and the inducer (pac-man) regions 

are less activated.  Therefore, averaging across these two retinotopic region types will reveal 

no changes in overall activity.  Our null parcel-wise and significant vertex-wise results provide 

some support for this view.  This may also explain why, historically, the methods with the 

highest spatial resolution were those that provided the most convincing evidence for illusory 

contour formation in V1 and V2 (Grosof et al., 1993; e.g., Lee and Nguyen, 2001; Kok and de 

Lange, 2014).  Higher resolution fMRI or more salient contours (Seghier et al., 2000) may be 

needed to bring out effects more fully within V1 and V2.   

 

Frontoparietal cortex and high-level feedback to mid-level vision  

Frontoparietal network regions were differentially active in orbitofrontal, dorsolateral 

prefrontal, and posterior parietal cortex.  Although frontoparietal regions could not be used to 

infer activity in secondary visual network regions in our ActFlow analyses, they were directly 

connected to dorsal attention network regions, which themselves could predict activity within 

this visual network.   

Frontoparietal involvement has been at least indirectly suggested by prior work.  For 

example, cognitively biasing observers to see edge elements as disconnected worsened the 

discrimination of illusory but not fragmented shapes (Keane et al., 2012).  A rapid and dramatic 

insight learning has been shown to occur within the first dozen trials of the “fat/thin” task, 

suggesting that properly seeing an illusory shape requires deploying an appropriate decisional 

template (Rubin et al., 1997; see also, Gold and Shubel, 2006).  As noted in the Introduction, 

peak orbitofrontal modulation from passively-viewed Kanizsa shapes arose 340 ms post 

stimulus onset (Halgren et al., 2003).  In eight month- (but not six month-) old infants, gamma 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 4, 2020. . https://doi.org/10.1101/2020.08.03.233403doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233403
http://creativecommons.org/licenses/by-nc-nd/4.0/


NETWORK MECHANISMS OF SHAPE COMPLETION 33 

   

 

band oscillations (40 HZ) from Kanizsa shapes were generated over frontal electrodes 

between 240-320 ms (Csibra et al., 2000).    

Frontoparietal cortex may serve to generate expectation-based predictions that can 

either help observers notice less salient illusory contours (Keane et al., 2012 p.416), or recover 

object structure when interpolated contours are absent (when edge elements are extremely 

sparse, misaligned, or misoriented (Wyatte et al., 2014; Keane, 2018).  For example, highly 

degraded line drawings (Sehatpour et al., 2006) and so-called salient regions (which lack 

illusory contours but which induce the formation of a blurry lightened/darkened surface, 

Stanley and Rubin, 2003) may activate lateral occipital regions at later stages of processing 

(Shpaner et al., 2009), which could reflect the brain’s best guesses about the precise shape of 

the incoming stimulus. 

It is important to note that high-level feedback of the type described is compatible with 

an automatic illusory contour formation process (Keane, 2018).  Behavioral and 

electrophysiological studies have shown that illusory contours maximally form within ~120 ms 

(Lee and Nguyen, 2001; Murray et al., 2002; Guttman and Kellman, 2004), which is well before 

the arrival of higher-order feedback.  Higher-order cortical feedback may be ineffectual even 

after its arrival, if it must compete with persistingly salient bottom-up signals (Desimone and 

Duncan, 1995; McMains and Kastner, 2010; Keane, 2018).  Thus, frontoparietal signals may 

primarily be important for noticing/using illusory contours for shape recognition tasks or for 

cognitively inferring the existence of contours when the stimulus conditions prevent salient 

illusory contours. 

 

A sketch of activity flow during visual shape completion and a possible role for the dorsal 

attentional network as a relay between frontoparietal cortex and mid-level vision 

Brain activity flow mapping with fMRI lacks the temporal resolution and directionality to 

fully characterize how task regions interact during visual shape completion.  However, our 

results, combined with others, contribute to an emerging picture.  In the initial afferent volley, 

activity likely flows from early visual areas, to mid-level shape areas such as V4 and lateral 

occipital complex (Wokke et al., 2013) and then back down to V2 and then V1 via an 

automatic, local recurrent circuit (Lee and Nguyen, 2001; Shpaner et al., 2013; Wyatte et al., 

2014).  As the illusory contours are constructed within the first ~150 ms (Guttman and Kellman, 
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2004), the mid-level visual areas—including area PH—simultaneously relay information 

forward to posterior parietal regions and then to orbitofrontal and dorsolateral prefrontal 

cortices (Cavada and Goldman-Rakic, 1989).  Finally, information flows back down the cortical 

hierarchy via the same route or even directly back to the secondary visual areas (Bar, 2003; 

Halgren et al., 2003).  In the later stages of shape completion, the anterior cingulate cortex, 

dorsolateral prefrontal cortex, inferior frontal junction, and intraparietal sulcus (e.g., a24, IFSa, 

p9-46v, IFJp, IP0, IP1) may also jointly segregate and sustain illusory-contour-defined shape 

representations (Naughtin et al., 2016; 2018).  This sketch is obviously far from complete but 

provides a scaffold upon which to build more sophisticated models. 

 

Objections, limitations, and opportunities for future research 

Although all subjects were repeatedly instructed to centrally fixate, eye movement 

confounds cannot be completely ruled out.   However, even if we were to discover task-related 

eye movement differences and even if these differences could be linked to differential brain 

activity (e.g., in LIPd), the result in itself would be difficult to interpret.  It could imply that shape 

perception generates different fixation patterns or the other way around.  An independent study 

would be needed to tease the two apart, which is beyond the scope of the present 

investigation. 

Past psychophysical studies have shown similar illusory and fragmented task 

performance (Keane et al., 2014) but in the present study the fragmented task was about 6 

percent better.  Why?  A possible reason is that past studies had a verbal response and ours 

had a button press.  The congruence between the left and right rotations and left and right 

button press may have conferred a small but consistent benefit perhaps by diminishing the 

likelihood of misremembering the mapping between keypress and response.  We do not view 

this as problematic, since the effects arose when the congruence benefit was behaviorally 

eliminated—both in RT and accuracy.  Therefore, while large task accuracy differences clearly 

alter the neural data (as in the easy versus hard contrast), smaller differences appear to have 

little effect.   

Limitations are worth noting.  We have confined our results to cortex but recent network 

partitions have been extended to include 358 subcortical structures (Ji et al., 2019).  Exploring 

these regions would require much larger subject samples to adequately correct for multiple 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 4, 2020. . https://doi.org/10.1101/2020.08.03.233403doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233403
http://creativecommons.org/licenses/by-nc-nd/4.0/


NETWORK MECHANISMS OF SHAPE COMPLETION 35 

   

 

comparisons, but would likely yield new insights.  Another limitation is that even though our 

shape completion study was more sensitive than most previous ones, a larger sample and a 

higher field magnet will likely reveal additional regions, connections, and networks.  Finally, as 

has already been noted, the slow hemodynamic response prevents a full description of the 

temporal dynamics. 

Notwithstanding the foregoing, the present research leverages a brain activity mapping 

method and recent advances in functional MRI to demonstrate the likely relevance of dorsal 

attention connections for visual shape completion.  The secondary visual network plays a 

dominant role in the process, but portions of at least four other networks—including the 

frontoparietal—participate in a densely interconnected network coalition, which can be used to 

model activations related to shape completion.  A logical next step will be to apply 

neurostimulation to probe parcel-wise causal interactions or electrophysiology to assess their 

activity flow dynamics. 
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